Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Int J Part Ther ; 12: 100015, 2024 Jun.
Article En | MEDLINE | ID: mdl-38827121

Purpose: To report clinical and dosimetric characteristics of 5-fraction stereotactic ablative radiotherapy (SABR) using intensity modulated proton therapy (IMPT) for localized prostate cancer. Materials and Methods: All patients receiving IMPT SABR from 2017 to 2021 for localized prostate cancer at our institution were included. Five fractions were delivered every other day to the prostate +/- seminal vesicles [clinical target volume (CTV)] with 3 mm/3% robustness. A 4-field arrangement with 2 anterior oblique and 2 opposed lateral beams was used in most patients (97%), and most (99%) had a retroprostatic hydrogel spacer. Results: A total of 534 patients with low (14%), favorable intermediate (45%), unfavorable intermediate (36%), high (4.0%), or very high-risk (0.6%) disease are evaluated. Prescription dose was 36.25 Gy (31%), 38 Gy (38%), or 40 Gy (31%) was prescribed. Median volume percentage of CTV receiving at least 100% of prescription dose [V100% (%)] was 100% [interquartile range: 99.99-100]. Rectum V50% (%), V80% (%), and V90% (%) were significantly lower in patients who had spacer, with a mean difference of -9.70%, -6.59%, and -4.42%, respectively, compared to those who did not have spacer. Femoral head dose was lower with a 4-field arrangement. Mean differences in left and right femoral head V40% (%) were -6.99% and -10.74%, respectively. Conclusion: We provide a large, novel report of patients treated with IMPT SABR for localized prostate cancer. Four-field IMPT with hydrogel spacer provides significant sparing of rectum and femoral heads without compromising target coverage.

2.
Int J Part Ther ; 11: 100007, 2024 Mar.
Article En | MEDLINE | ID: mdl-38757073

Purpose: The breakpoint for a 360° radiotherapy gantry is typically positioned at 180°. This arbitrary setting has not been systematically evaluated for efficiency and may cause redundant gantry rotation and extended setup times. Our study aimed to identify an optimal gantry breakpoint angle for a full-gantry proton therapy system, with the goal of minimizing gantry movement. Materials and Methods: We analyzed 70 months of clinically delivered proton therapy plans (9152 plans, 131 883 fractions), categorizing them by treatment site and mapping the fields from a partial-gantry to full-gantry orientation. For each delivered fraction, we computed the minimum total gantry rotation angle as a function of gantry breakpoint position, which was varied between 0° and 360° in 1° steps. This analysis was performed separately within the entire plan cohort and individual treatment sites, both with and without the capability of over-rotating 10° past the breakpoint from either direction (20° overlap). The optimal gantry breakpoint was identified as one which resulted in a low average gantry rotation per fraction. Results: Considering mechanical constraints, 130° was identified as a reasonable balance between increased gantry-rotation efficiency and practical treatment considerations. With a 20° overlap, this selection reduced the average gantry rotation by 41.4° per fraction when compared to the standard 180° breakpoint. Disease site subgroups showed the following reduction in average gantry rotation: gastrointestinal 192.2°, thoracic 56.3°, pediatric 44.9°, genitourinary 19.9°, central nervous system 10.7°, breast 2.8°, and head and neck 0.1°. Conclusion: For a full-gantry system, a breakpoint of 130° generally outperforms the conventional 180° breakpoint. This reduction is particularly impactful for gastrointestinal, pediatric, and thoracic sites, which constitute a significant proportion of cases at our center. The adjusted breakpoint could potentially streamline patient delivery, alleviate mechanical wear, and enhance treatment precision by reducing the likelihood of patient movement during delivery.

3.
Neurooncol Adv ; 6(1): vdae034, 2024.
Article En | MEDLINE | ID: mdl-38550393

Background: This study aimed to determine whether proton craniospinal irradiation (CSI) decreased the dose to normal tissue and resulted in less toxicity than photon CSI for adult patients. Methods: This single-institution retrospective analyzed differences in radiation doses, acute toxicity, and cost between proton and CSI for adult medulloblastoma patients. Results: Of 39 total patients, 20 were treated with photon CSI prior to 2015, and 19 were treated with proton CSI thereafter. Median age was 28 years (range 18-66). The molecular subtype was most commonly sonic hedgehog (68%). Patients most commonly received 36 Gy CSI in 20 fractions with a boost to 54-55.8 Gy (92%). Proton CSI delivered significantly lower mean doses to cochleae, lacrimal glands, lens, parotid glands, pharyngeal constrictors, esophagus, lungs, liver, and skin (all P < .001). Patients receiving proton CSI had significantly lower rates of acute dysphagia of any grade (5% versus 35%, P = .044) and decreased median weight loss during radiation (+1.0 versus -2.8 kg, P = .011). Weight loss was associated with acute hospitalization (P = .009). Median follow-up was 2.9 and 12.9 years for proton and photon patients, respectively, limiting late toxicity and outcome comparisons. At the last follow-up, 5 photon patients had died (2 of progressive disease, 3 without recurrence ages 41-63) and 21% had experienced major cardiovascular events. At 10 years, 89% were alive and 82% were recurrence free. Conclusions: This study demonstrates dosimetric improvements with proton CSI, potentially leading to decreased acute toxicity including dysphagia and weight loss during treatment.

4.
Int J Radiat Oncol Biol Phys ; 117(3): 533-550, 2023 11 01.
Article En | MEDLINE | ID: mdl-37244628

PURPOSE: The ongoing lack of data standardization severely undermines the potential for automated learning from the vast amount of information routinely archived in electronic health records (EHRs), radiation oncology information systems, treatment planning systems, and other cancer care and outcomes databases. We sought to create a standardized ontology for clinical data, social determinants of health, and other radiation oncology concepts and interrelationships. METHODS AND MATERIALS: The American Association of Physicists in Medicine's Big Data Science Committee was initiated in July 2019 to explore common ground from the stakeholders' collective experience of issues that typically compromise the formation of large inter- and intra-institutional databases from EHRs. The Big Data Science Committee adopted an iterative, cyclical approach to engaging stakeholders beyond its membership to optimize the integration of diverse perspectives from the community. RESULTS: We developed the Operational Ontology for Oncology (O3), which identified 42 key elements, 359 attributes, 144 value sets, and 155 relationships ranked in relative importance of clinical significance, likelihood of availability in EHRs, and the ability to modify routine clinical processes to permit aggregation. Recommendations are provided for best use and development of the O3 to 4 constituencies: device manufacturers, centers of clinical care, researchers, and professional societies. CONCLUSIONS: O3 is designed to extend and interoperate with existing global infrastructure and data science standards. The implementation of these recommendations will lower the barriers for aggregation of information that could be used to create large, representative, findable, accessible, interoperable, and reusable data sets to support the scientific objectives of grant programs. The construction of comprehensive "real-world" data sets and application of advanced analytical techniques, including artificial intelligence, holds the potential to revolutionize patient management and improve outcomes by leveraging increased access to information derived from larger, more representative data sets.


Neoplasms , Radiation Oncology , Humans , Artificial Intelligence , Consensus , Neoplasms/radiotherapy , Informatics
5.
Circ Arrhythm Electrophysiol ; 16(6): e011179, 2023 06.
Article En | MEDLINE | ID: mdl-37183678

BACKGROUND: Particle therapy is a noninvasive, catheter-free modality for cardiac ablation. We previously demonstrated the efficacy for creating ablation lesions in the porcine heart. Despite several earlier studies, the exact mechanism of early biophysical effects of proton and photon beam delivery on the myocardium remain incompletely resolved. METHODS: Ten normal and 9 infarcted in situ porcine hearts received proton beam irradiation (40 Gy) delivered to the left ventricular myocardium with follow-up for 8 weeks. High-resolution electroanatomical mapping of the left ventricular was performed at baseline and follow-up. Bipolar voltage amplitude, conduction velocity, and connexin-43 were determined within the irradiated and nonirradiated areas. RESULTS: The irradiated area in normal hearts showed a significant reduction of bipolar voltage amplitude (10.1±4.9 mV versus 5.7±3.2, P<0.0001) and conduction velocity (85±26 versus 55±13 cm/s, P=0.03) beginning at 4 weeks after irradiation. In infarcted myocardium after irradiation, bipolar voltage amplitude of the infarct scar (2.0±2.9 versus 0.8±0.7 mV, P=0.008) was significantly reduced as well as the conduction velocity in the infarcted heart (43.7±15.7 versus 26.3±11.4 cm/s, P=0.02). There were no significant changes in bipolar voltage amplitude and conduction velocity in nonirradiated myocardium. Myocytolysis, capillary hyperplasia, and dilation were seen in the irradiated myocardium 8 weeks after irradiation. Active caspase-3 and reduction of connexin-43 expression began in irradiated myocardium 1 week after irradiation and decreased over 8 weeks. CONCLUSIONS: Irradiation of the myocardium with proton beams reduce connexin-43 expression, conduction velocity, and bipolar conducted electrogram amplitude in a large porcine model. The changes in biomarkers preceded electrophysiological changes after proton beam therapy.


Catheter Ablation , Proton Therapy , Tachycardia, Ventricular , Swine , Animals , Protons , Myocardium/pathology , Connexins
6.
Med Phys ; 50(7): 4521-4532, 2023 Jul.
Article En | MEDLINE | ID: mdl-37084072

BACKGROUND AND PURPOSE: Proton therapy is a key modality used in the treatment of ocular melanoma. Traditionally ocular sites are treated using a dedicated eyeline with a passively scattered proton beam and a brass aperture. This work aims to design and characterize a beam-collimating aperture to treat ocular targets with a gantry-based spot scanning proton beam. METHODS: A plastic aperture system that slides into the gantry nozzle of a spot scanning proton beam was designed and constructed. It consists of an intermediate scraper layer to attenuate stray protons and a 3D-printed patient-specific aperture positioned 5.7 cm from the surface of the eye. The aperture system was modeled in TOPAS and Monte Carlo simulations were validated with film measurements. Two different spot configurations were investigated for treatment planning and characterized based on lateral penumbra, central axis (CAX) dose and relative efficiency. Alignment and leakage were investigated through experimental film measurements. Range was verified using a multi-layer ionization chamber. Reference dose measurements were made with a PinPoint 3D ion chamber. Neutron dose was evaluated through Monte Carlo simulations. RESULTS: Aperture alignment with radiation isocenter was determined to be within 0.31 mm at a gantry angle of 0°. A single-spot configuration with a 10 mm diameter aperture yielded film-measured lateral penumbras of 1 mm to 1.25 mm, depending on depth in the spread-out Bragg peak. TOPAS simulations found that a single spot configuration results in a flat dose distribution for a 10 mm diameter aperture and provides a CAX dose of less than 106% for apertures less than 14 mm in diameter. For larger targets, adding four corner spots to fill in the dose distribution is beneficial. Trade-offs between lateral penumbra, CAX dose and relative efficiency were characterized for different spot configurations and can be used for future clinical decision-making. The aperture was experimentally determined to not affect proton beam range, and no concerning leakage radiation or neutron dose was identified. Reference dose measurements with a PinPoint ion chamber were within 2.1% of Monte Carlo calculated doses. CONCLUSION: The aperture system developed in this work provides a method of treating ocular sites on a gantry-based spot scanning proton system. Additional work to develop compatible gaze tracking and gating infrastructure is ongoing.


Eye Neoplasms , Proton Therapy , Humans , Protons , Radiotherapy Dosage , Proton Therapy/methods , Eye Neoplasms/radiotherapy , Monte Carlo Method , Radiotherapy Planning, Computer-Assisted/methods
7.
Int J Part Ther ; 9(2): 49-58, 2022.
Article En | MEDLINE | ID: mdl-36060413

Purpose: Finite proton range affords improved dose conformality of radiation therapy when patient regions-of-interest geometries are well characterized. Substantial changes in patient anatomy necessitate re-planning (RP) to maintain effective, safe treatment. Regularly planned verification scanning (VS) is performed to ensure consistent treatment quality. Substantial resources, however, are required to conduct an effective proton plan verification program, which includes but is not limited to, additional computed tomography (CT) scanner time and dedicated personnel: radiation therapists, medical physicists, physicians, and medical dosimetrists. Materials and Methods: Verification scans (VSs) and re-plans (RPs) of 711 patients treated with proton therapy between June 2015 and June 2018 were studied. All treatment RP was performed with the intent to maintain original plan integrity and coverage. The treatments were classified by anatomic site: brain, craniospinal, bone, spine, head and neck (H&N), lung or chest, breast, prostate, rectum, anus, pelvis, esophagus, liver, abdomen, and extremity. Within each group, the dates of initial simulation scan, number of VSs, number of fractions completed at the time of VS, and the frequency of RP were collected. Data were analyzed in terms of rate of RP and individual likelihood of RP. Results: A total of 2196 VSs and 201 RPs were performed across all treatment sites. H&N and lung or chest disease sites represented the largest proportion of plan modifications in terms of rate of re-plan (RoR: 54% and 58%, respectively) and individual likelihood of RP on a per patient basis (likelihood of RP [RP%]: 46% and 39%, respectively). These sites required RP beyond 4 weeks of treatment, suggesting continued benefit for frequent, periodic VS. Disease sites in the lower pelvis demonstrated a low yield for RP per VS (0.01-0.02), suggesting that decreasing VS frequency, particularly late in treatment, may be reasonable. Conclusions: A large degree of variation in RoR and individual RP% was observed between anatomic treatment sites. The present retrospective analysis provides data to help develop anatomic site-based VS protocols.

8.
J Med Syst ; 45(8): 80, 2021 Jul 13.
Article En | MEDLINE | ID: mdl-34258667

Patient wait time can negatively impact treatment quality in a proton therapy center, where multiple treatment rooms share one proton beam. Wait time increases patient discomfort that can lead to patient motion, dissatisfaction, and longer treatment delay. This study was to develop a patient call-back model that reduced patient wait while efficiently utilizing the proton beam. A "Gatekeeper" logic allowing therapists to adjust the time of a patient's call-back to the treatment room was developed. It uses a two-pronged approach to minimize overlap of long treatment and the possibility of excessive wait in the queue to receive the proton beam. The goal was to reduce the maximum wait time to less than eight minutes per field for a four-room facility. The effectiveness of this logic was evaluated through simulation, and five scenarios were compared. Four scenarios implementing various levels of gatekeeper logic were compared with the original scenario without the logic. The best performing model provided a reduction of the maximum field wait by 26% and met the predefined goal. Adjusting call-back extended the treatment day length by an average of 6 min and a maximum of 12 min in total. The use of this gatekeeper logic significantly reduces patient field wait with minimal impact on treatment day length for a four-room proton facility. A sample interface that adopts this logic for therapists to make informed decision on patient call-back time is demonstrated.


Proton Therapy , Protons , Humans , Waiting Lists
9.
Circ Arrhythm Electrophysiol ; 13(10): e008838, 2020 10.
Article En | MEDLINE | ID: mdl-32921132

BACKGROUND: Proton beam therapy offers radiophysical properties that are appealing for noninvasive arrhythmia elimination. This study was conducted to use scanned proton beams for ablation of cardiac tissue, investigate electrophysiological outcomes, and characterize the process of lesion formation in a porcine model using particle therapy. METHODS: Twenty-five animals received scanned proton beam irradiation. ECG-gated computed tomography scans were acquired at end-expiration breath hold. Structures (atrioventricular junction or left ventricular myocardium) and organs at risk were contoured. Doses of 30, 40, and 55 Gy were delivered during expiration to the atrioventricular junction (n=5) and left ventricular myocardium (n=20) of intact animals. RESULTS: In this study, procedural success was tracked by pacemaker interrogation in the atrioventricular junction group, time-course magnetic resonance imaging in the left ventricular group, and correlation of lesion outcomes displayed in gross and microscopic pathology. Protein extraction (active caspase-3) was performed to investigate tissue apoptosis. Doses of 40 and 55 Gy caused slowing and interruption of cardiac impulse propagation at the atrioventricular junction. In 40 left ventricular irradiated targets, all lesions were identified on magnetic resonance after 12 weeks, being consistent with outcomes from gross pathology. In the majority of cases, lesion size plateaued between 12 and 16 weeks. Active caspase-3 was seen in lesions 12 and 16 weeks after irradiation but not after 20 weeks. CONCLUSIONS: Scanned proton beams can be used as a tool for catheter-free ablation, and time-course of tissue apoptosis was consistent with lesion maturation.


Ablation Techniques , Atrioventricular Node/radiation effects , Heart Ventricles/radiation effects , Proton Therapy , Ablation Techniques/adverse effects , Animals , Apoptosis , Atrioventricular Node/diagnostic imaging , Atrioventricular Node/pathology , Female , Heart Ventricles/diagnostic imaging , Heart Ventricles/pathology , Magnetic Resonance Imaging, Cine , Male , Models, Animal , Necrosis , Proton Therapy/adverse effects , Radiation Dosage , Sus scrofa , Time Factors , Tomography, X-Ray Computed
10.
Heart Rhythm ; 17(12): 2190-2199, 2020 12.
Article En | MEDLINE | ID: mdl-32673796

BACKGROUND: Scar-related ventricular arrhythmias are common after myocardial infarction. Catheter ablation can improve prognosis, but the procedure is invasive and results are not always satisfactory. Noninvasive, catheter-free ablation using ionizing radiation has recently gained interest among electrophysiologists, but the tissue effects and physiological outcome have not been fully characterized. OBJECTIVE: The purpose of this study was to investigate the structural effects of cardiac scanned pencil beam proton therapy on infarct scar, the time course of imaging biomarkers, arrhythmias, and cardiac function in a porcine model. METHODS: Fourteen infarcted swine underwent proton beam treatment of the scar (40 or 30 Gy) and were followed for up to 30 weeks. Magnetic resonance imaging was performed every 4 weeks. RESULTS: Treated scar areas showed a significantly lower fraction of surviving myocytes at 30 weeks compared to untreated scar (30.1% ± 18.5% and 59.9% ± 10.1% in treated and untreated infarct, respectively), indicating scar homogenization. Four animals died suddenly during follow-up, all from documented monomorphic ventricular tachycardia. Cardiac function remained stable over the course of the study. Distinct imaging morphologies corresponded to certain tissue dose ranges and time points. CONCLUSION: Radioablation of cardiac infarct scar leads to significant homogenization of the scar, replicating the histologic effects of radiofrequency ablation. These changes correspond to distinct imaging morphologies on delayed contrast-enhanced cardiac magnetic resonance imaging, enabling noninvasive confirmation of tissue ablation effects The present study is the first to thoroughly investigate the structural effects of cardiac proton beam therapy in infarcted myocardium.


Ablation Techniques/methods , Myocardial Infarction/complications , Myocardium/pathology , Proton Therapy/methods , Tachycardia, Ventricular/radiotherapy , Animals , Disease Models, Animal , Dose-Response Relationship, Radiation , Magnetic Resonance Imaging, Cine , Myocardial Infarction/diagnosis , Swine , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/etiology , Treatment Outcome
11.
J Appl Clin Med Phys ; 21(8): 168-172, 2020 Aug.
Article En | MEDLINE | ID: mdl-32542911

BACKGROUND: A proton therapy system with 190° gantries uses robotic couch rotations to change the treatment beam laterality. Couch rotations are typically validated clinically with post-rotation radiographic imaging. AIMS: This study assesses the specificity and sensitivity of a commercial 3D surface imaging system, AlignRT (Vision RT, London UK) for validating couch rotations. MATERIALS & METHODS: In clinical operation, a reference surface image of the patient is acquired after radiographic setup with couch at 270°, perpendicular to the gantry axis of rotation. The couch is then rotated ±90° to a typical treatment angle, and AlignRT reports a 3D displacement vector. Patient motion, changes in patient surface, non-coincidence between AlignRT and couch isocenter, and mechanical couch run-out all contribute to the 3D vector magnitude. To assess AlignRT sensitivity in detecting couch run-out, volunteers were positioned orthogonal to the proton gantry and reference surface images were captured without x-ray localization. Subjects were repeatedly rotated ±90° to typical treatment angles and displacement vectors were recorded. Additionally, measurements were performed in which intentional translations of 2, 4, 6, and 8 mm were combined with the intended isocentric rotations. Data sets were collected using a phantom; subjects with a thoracic isocenter and no immobilization; and subjects with a cranial isocenter and thermoplastic immobilization. A total of 300 rotations were measured. RESULTS: During isocentric rotations, the mean AlignRT displacement vectors for the phantom, immobilized, and non-immobilized volunteers were 0.1 ± 0.1 mm, 0.8 ± 0.1 mm, and 1.1 ± 0.2 mm respectively. 95% of the AlignRT measurements for the immobilized and non-immobilized subjects were within 1 mm and 2 mm of the actual displacement respectively. DISCUSSION: After characterizing the accuracy using phantoms and volunteers, we have shown that a three-pod surface imaging system can be used to identify gross non-isocentric patient rotations. Significant positional deviations, either due to improper couch rotation or patient motion, should be followed by radiographic imaging and repositioning. CONCULSION: AlignRT can be used to verify patient positioning following couch rotations that are applied after the initial x-ray guided patient setup. Using a three-pod AlignRt system, positional deviations exceeding 4 mm were flagged with sensitivity and specificity of 90% and 100% respectively.


Robotic Surgical Procedures , Robotics , Humans , Imaging, Three-Dimensional , Patient Positioning , Phantoms, Imaging
12.
J Appl Clin Med Phys ; 20(9): 69-77, 2019 Sep.
Article En | MEDLINE | ID: mdl-31538720

PURPOSE: To quantify the effects of combining layer-based repainting and respiratory gating as a strategy to mitigate the dosimetric degradation caused by the interplay effect between a moving target and dynamic spot-scanning proton delivery. METHODS: An analytic routine modeled three-dimensional dose distributions of pencil-beam proton plans delivered to a moving target. Spot positions and weights were established for a single field to deliver 100 cGy to a static, 15-cm deep, 3-cm radius spherical clinical target volume with a 1-cm isotropic internal target volume expansion. The interplay effect was studied by modeling proton delivery from a clinical synchrotron-based spot scanning system and respiratory target motion, patterned from surrogate patient breathing traces. Motion both parallel and orthogonal to the beam scanning direction was investigated. Repainting was modeled using a layer-based technique. For each of 13 patient breathing traces, the dose from 20 distinct delivery schemes (combinations of four gate window amplitudes and five repainting techniques) was computed. Delivery strategies were inter-compared based on target coverage, dose homogeneity, high dose spillage, and delivery time. RESULTS: Notable degradation and variability in plan quality were observed for ungated delivery. Decreasing the gate window reduced this variability and improved plan quality at the expense of longer delivery times. Dose deviations were substantially greater for motion orthogonal to the scan direction when compared with parallel motion. Repainting coupled with gating was effective at partially restoring dosimetric coverage at only a fraction of the delivery time increase associated with very small gate windows alone. Trends for orthogonal motion were similar, but more complicated, due to the increased severity of the interplay. CONCLUSIONS: Layer-based repainting helps suppress the interplay effect from intra-gate motion, with only a modest penalty in delivery time. The magnitude of the improvement in target coverage is strongly influenced by individual patient breathing patterns and the tumor motion trajectory.


Movement , Neoplasms/radiotherapy , Phantoms, Imaging , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/standards , Synchrotrons/instrumentation , Four-Dimensional Computed Tomography , Humans , Organs at Risk/radiation effects , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
13.
Heart Rhythm ; 16(11): 1710-1719, 2019 11.
Article En | MEDLINE | ID: mdl-31004779

BACKGROUND: Noninvasive cardiac ablation of ventricular tachycardia (VT) using radiotherapy has recently gained interest among electrophysiologists. The effects of left ventricular (LV) ablative radiation treatment on global LV function and volumes are unknown. OBJECTIVE: The purpose of this study was to investigate the effects of noninvasive ablation on LV function over time. METHODS: Twenty domestic swine underwent proton beam treatment of LV sites in a dose-finding design and were followed for up to 40 weeks by cardiac magnetic resonance imaging at 4-week intervals. Doses investigated were either 40 Gy at 1 site (n = 8) or 30 Gy at 2 sites (n = 4) in the low-dose group and 40 Gy at 3 sites (n = 8) in the high-dose group. RESULTS: LV mean dose (13.2 ± 1.8 Gy vs 4.6 ± 1.8 Gy) and the volume receiving at least 20 Gy (V20Gy) (24.7% ± 4.8% vs 6.4% ± 3.0%) differed significantly between groups. Dose-dependent effects on left ventricular ejection fraction (LVEF) and LV end-diastolic volume became manifest about 3 months after treatment. LVEF decline was correlated to mean dose (correlation coefficient ρ = -0.69; P = .008) and V20Gy (ρ = -0.66; P = .01), as was LV dilation (ρ = 0.72; P = .005; and ρ = 0.75, P = .003 respectively). CONCLUSION: Possible adverse effects on LV function, seen about 3 months after treatment, are dose dependent. Therefore, precise target definition and focused energy delivery are paramount in catheter-free ablation.


Proton Therapy/methods , Tachycardia, Ventricular/radiotherapy , Ventricular Function, Left/radiation effects , Animals , Disease Models, Animal , Dose-Response Relationship, Radiation , Magnetic Resonance Imaging , Radiotherapy Dosage , Stroke Volume , Swine , Tomography, X-Ray Computed
14.
J Appl Clin Med Phys ; 20(5): 99-108, 2019 May.
Article En | MEDLINE | ID: mdl-30972922

PURPOSE: The aim of this work is to describe the clinical implementation of respiratory-gated spot-scanning proton therapy (SSPT) for the treatment of thoracic and abdominal moving targets. The experience of our institution is summarized, from initial acceptance and commissioning tests to the development of standard clinical operating procedures for simulation, motion assessment, motion mitigation, treatment planning, and gated SSPT treatment delivery. MATERIALS AND METHODS: A custom respiratory gating interface incorporating the Real-Time Position Management System (RPM, Varian Medical Systems, Inc., Palo Alto, CA, USA) was developed in-house for our synchrotron-based delivery system. To assess gating performance, a motion phantom and radiochromic films were used to compare gated vs nongated delivery. Site-specific treatment planning protocols and conservative motion cutoffs were developed, allowing for free-breathing (FB), breath-holding (BH), or phase-gating (Ph-G). Room usage efficiency of BH and Ph-G treatments was retrospectively evaluated using beam delivery data retrieved from our record and verify system and DICOM files from patient-specific quality assurance (QA) procedures. RESULTS: More than 70 patients were treated using active motion management between the launch of our motion mitigation program in October 2015 and the end date of data collection of this study in January 2018. During acceptance procedures, we found that overall system latency is clinically-suitable for Ph-G. Regarding room usage efficiency, the average number of energy layers delivered per minute was <10 for Ph-G, 10-15 for BH and ≥15 for FB, making Ph-G the slowest treatment modality. When comparing to continuous delivery measured during pretreatment QA procedures, the median values of BH treatment time were extended from 6.6 to 9.3 min (+48%). Ph-G treatments were extended from 7.3 to 13.0 min (+82%). CONCLUSIONS: Active motion management has been crucial to the overall success of our SSPT program. Nevertheless, our conservative approach has come with an efficiency cost that is more noticeable in Ph-G treatments and should be considered in decision-making.


Abdominal Neoplasms/radiotherapy , Movement , Phantoms, Imaging , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Respiratory-Gated Imaging Techniques/methods , Thoracic Neoplasms/radiotherapy , Breath Holding , Humans , Prognosis , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Synchrotrons/instrumentation
15.
Med Phys ; 45(11): 5186-5196, 2018 Nov.
Article En | MEDLINE | ID: mdl-30191573

PURPOSE: Photon counting detectors (PCDs) are being introduced in advanced x-ray computed tomography (CT) scanners. From a single PCD-CT acquisition, multiple images can be reconstructed, each based on only a part of the original x-ray spectrum. In this study, we investigated whether PCD-CT can be used to estimate stopping power ratios (SPRs) for proton therapy treatment planning, both by comparing to other SPR methods proposed for single energy CT (SECT) and dual energy CT (DECT) as well as to experimental measurements. METHODS: A previously developed DECT-based SPR estimation method was adapted to PCD-CT data, by adjusting the estimation equations to allow for more energy spectra. The method was calibrated directly on noisy data to increase the robustness toward image noise. The new PCD SPR estimation method was tested in theoretical calculations as well as in an experimental setup, using both four and two energy bin PCD-CT images, and through comparison to two other SPR methods proposed for SECT and DECT. These two methods were also evaluated on PCD-CT images, full spectrum (one-bin) or two-bin images, respectively. In a theoretical framework, we evaluated the effect of patient-specific tissue variations (density and elemental composition) and image noise on the SPR accuracy; the latter effect was assessed by applying three different noise levels (low, medium, and high noise). SPR estimates derived using real PCD-CT images were compared to experimentally measured SPRs in nine organic tissue samples, including fat, muscle, and bone tissues. RESULTS: For the theoretical calculations, the root-mean-square error (RMSE) of the SPR estimation was 0.1% for the new PCD method using both two and four energy bins, compared to 0.2% and 0.7% for the DECT- and SECT-based method, respectively. The PCD method was found to be very robust toward CT image noise, with a RMSE of 2.7% when high noise was added to the CT numbers. Introducing tissue variations, the RMSE only increased to 0.5%; even when adding high image noise to the changed tissues, the RMSE stayed within 3.1%. In the experimental measurements, the RMSE over the nine tissue samples was 0.8% when using two energy bins, and 1.0% for the four-bin images. CONCLUSIONS: In all tested cases, the new PCD method produced similar or better results than the SECT- and DECT-based methods, showing an overall improvement of the SPR accuracy. This study thus demonstrated that PCD-CT scans will be a qualified candidate for SPR estimations.


Photons , Protons , Tomography, X-Ray Computed/instrumentation , Calibration , Image Processing, Computer-Assisted , Models, Theoretical , Signal-To-Noise Ratio
16.
J Appl Clin Med Phys ; 19(5): 335-346, 2018 Sep.
Article En | MEDLINE | ID: mdl-29959816

The charge of AAPM Task Group 113 is to provide guidance for the physics aspects of clinical trials to minimize variability in planning and dose delivery for external beam trials involving photons and electrons. Several studies have demonstrated the importance of protocol compliance on patient outcome. Minimizing variability for treatments at different centers improves the quality and efficiency of clinical trials. Attention is focused on areas where variability can be minimized through standardization of protocols and processes through all aspects of clinical trials. Recommendations are presented for clinical trial designers, physicists supporting clinical trials at their individual clinics, quality assurance centers, and manufacturers.


Clinical Trials as Topic , Electrons , Humans , Photons , Physics , Positron Emission Tomography Computed Tomography , Practice Guidelines as Topic , Research Report
17.
Endosc Int Open ; 6(6): E766-E768, 2018 Jun.
Article En | MEDLINE | ID: mdl-29876514

BACKGROUND AND STUDY AIMS: Little consideration has been given to selection of endoscopic ultrasound-guided fiducials for proton radiotherapy and the resulting perturbations in the therapy dose and pattern. Our aim was to assess the impact of perturbations caused by six fiducials of different composition and dimensions in a phantom gel model. MATERIALS AND METHODS: The phantom was submerged in a water bath and irradiated with a uniform 10 cm × 10 cm field of 119.7 MeV monoenergetic spot scanning protons delivered through a 45 mm range shifter. The proton "Bragg Peak" was evaluated. RESULTS: Dose perturbations manifesting as dose reductions up to 30 % were observed. A carbon composite (1 × 5 mm) and gold (0.4 × 10 mm) fiducial with backload potential rather than dedicated EUS pre-loaded gold fiducial needles had the best performance in terms of minimizing the dose perturbation. CONCLUSIONS: Our data demonstrate that a carbon composite fiducial has a less untoward effect on proton therapy dose distribution than dedicated EUS pre-loaded gold fiducial needles. Such information is important to consider when selecting fiducials specifically for proton therapy.

18.
Acta Oncol ; 57(5): 629-636, 2018 May.
Article En | MEDLINE | ID: mdl-29129125

PURPOSE: To demonstrate the clinical efficacy and safety of a highly conformal, supine, hybrid forward and inverse planned intensity modulated radiation therapy (IMRT) technique for photon craniospinal irradiation (CSI). METHODS: Patients who received supine, hybrid IMRT CSI from 2009 to 2014 were included in this retrospective review. Clinical target volume (CTV) was defined as intracranial contents and thecal sac, including nerve roots. Dose was prescribed such that >99% of CTV received >99% of prescription and >95% of the planning target volume received >95% of prescription, with no attempt to include vertebral bodies. Lateral fields were utilized at the cranium and upper cervical spine. Spine fields were either single posterior or 2-3 obliques. Plans were generated with a hybrid of forward and inverse planned IMRT. Inferior borders of the cranium fields and superior border of the lower spine field were designed with 6-15 cm long, gradual dose gradients by sequential closing of multileaf collimator leaves using forward planned multiple static segment IMRT delivery. The sliding window upper spine IMRT field was created by the inverse planning system to match gradients of the brain and lower spine fields. The lower spine field gradient was similarly completed. RESULTS: The cohort consisted of 34 patients. Median CSI dose was 36 Gy (range: 18-39.6 Gy). With a median follow up of 59.4 months, there were no isolated recurrences or spinal myelopathies at CTV margins or field gradients. Eleven patients had recurrence, all of which were intracranial. CONCLUSIONS: Our hybrid forward and inverse planned IMRT supine CSI technique did not result in any isolated recurrences or myelopathies at CTV margins or field gradients. This suggests our target volumes and blended gradients are appropriate for highly conformal three-dimensional planning.


Central Nervous System Neoplasms/radiotherapy , Craniospinal Irradiation/methods , Radiotherapy, Intensity-Modulated/methods , Central Nervous System Neoplasms/mortality , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Male , Retrospective Studies
19.
Phys Med Biol ; 63(1): 015012, 2017 12 14.
Article En | MEDLINE | ID: mdl-29057753

Dual energy CT (DECT) has been shown, in theoretical and phantom studies, to improve the stopping power ratio (SPR) determination used for proton treatment planning compared to the use of single energy CT (SECT). However, it has not been shown that this also extends to organic tissues. The purpose of this study was therefore to investigate the accuracy of SPR estimation for fresh pork and beef tissue samples used as surrogates of human tissues. The reference SPRs for fourteen tissue samples, which included fat, muscle and femur bone, were measured using proton pencil beams. The tissue samples were subsequently CT scanned using four different scanners with different dual energy acquisition modes, giving in total six DECT-based SPR estimations for each sample. The SPR was estimated using a proprietary algorithm (syngo.via DE Rho/Z Maps, Siemens Healthcare, Forchheim, Germany) for extracting the electron density and the effective atomic number. SECT images were also acquired and SECT-based SPR estimations were performed using a clinical Hounsfield look-up table. The mean and standard deviation of the SPR over large volume-of-interests were calculated. For the six different DECT acquisition methods, the root-mean-square errors (RMSEs) for the SPR estimates over all tissue samples were between 0.9% and 1.5%. For the SECT-based SPR estimation the RMSE was 2.8%. For one DECT acquisition method, a positive bias was seen in the SPR estimates, having a mean error of 1.3%. The largest errors were found in the very dense cortical bone from a beef femur. This study confirms the advantages of DECT-based SPR estimation although good results were also obtained using SECT for most tissues.


Bone and Bones/diagnostic imaging , Image Processing, Computer-Assisted/methods , Protons , Red Meat/analysis , Signal-To-Noise Ratio , Tomography, X-Ray Computed/methods , Algorithms , Animals , Humans , Models, Theoretical , Phantoms, Imaging
20.
Article En | MEDLINE | ID: mdl-28408649

BACKGROUND: This study sought to investigate external photon beam radiation for catheter-free ablation of the atrioventricular junction in intact pigs. METHODS AND RESULTS: Ten pigs were randomized to either sham irradiation or irradiation of the atrioventricular junction (55, 50, 40, and 25 Gy). Animals underwent baseline electrophysiological evaluation, cardiac gated multi-row computed tomographic imaging for beam delivery planning, and intensity-modulated radiation therapy. Doses to the coronary arteries were optimized. Invasive follow-up was conducted ≤4 months after the irradiation. A mean volume of 2.5±0.5 mL was irradiated with target dose. The mean follow-up length after irradiation was 124.8±30.8 days. Out of 7 irradiated animals, complete atrioventricular block was achieved in 6 animals of all 4 dose groups (86%). Using the same targeting margins, ablation lesion size notably increased with the delivered dose because of volumetric effects of isodose lines around the target volume. The mean macroscopically calculated atrial lesion volume for all 4 dose groups was 3.8±1.1 mL, lesions extended anteriorly into the interventricular septum. No short-term side effects were observed. No damage was observed in the tissues of the esophagus, phrenic nerves, or trachea. However, histology revealed in-field beam effects outside of the target volume. CONCLUSIONS: Single-fraction doses as low as 25 Gy caused a lesion with interruption of cardiac impulse propagation using this respective target volume. With doses of ≤55 Gy, maximal point-doses to coronary arteries could be kept <7Gy, but target conformity of lesions was not fully achieved using this approach.


Ablation Techniques , Atrioventricular Node/surgery , Photons , Radiotherapy, Intensity-Modulated , Ablation Techniques/adverse effects , Action Potentials , Animals , Atrioventricular Node/diagnostic imaging , Atrioventricular Node/pathology , Atrioventricular Node/physiopathology , Cardiac-Gated Imaging Techniques , Electrocardiography , Electrophysiologic Techniques, Cardiac , Female , Heart Rate , Male , Models, Animal , Multidetector Computed Tomography , Photons/adverse effects , Radiation Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/adverse effects , Sus scrofa , Time Factors
...