Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Biomech ; 171: 112179, 2024 May 31.
Article En | MEDLINE | ID: mdl-38852482

Cell volume and shape changes play a pivotal role in cellular mechanotransduction, governing cellular responses to external loading. Understanding the dynamics of cell behavior under loading conditions is essential to elucidate cell adaptation mechanisms in physiological and pathological contexts. In this study, we investigated the effects of dynamic cyclic compression loading on cell volume and shape changes, comparing them with static conditions. Using a custom-designed platform which allowed for simultaneous loading and imaging of cartilage tissue, tissues were subjected to 100 cycles of mechanical loading while measuring cell volume and shape alterations during the unloading phase at specific time points. The findings revealed a transient decrease in cell volume (13%) during the early cycles, followed by a gradual recovery to baseline levels after approximately 20 cycles, despite the cartilage tissue not being fully recovered at the unloading phase. This observed pattern indicates a temporal cell volume response that may be associated with cellular adaptation to the mechanical stimulus through mechanisms related to active cell volume regulation. Additionally, this study demonstrated that cell volume and shape responses during dynamic loading were significantly distinct from those observed under static conditions. Such findings suggest that cells in their natural tissue environment perceive and respond differently to dynamic compared to static mechanical cues, highlighting the significance of considering dynamic loading environments in studies related to cellular mechanics. Overall, this research contributes to the broader understanding of cellular behavior under mechanical stimuli, providing valuable insights into their ability to adapt to dynamic mechanical loading.

...