Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(24): 10601-10610, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833530

RESUMEN

The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.


Asunto(s)
Compuestos Férricos , Oryza , Fosfatos , Suelo , Oryza/química , Fosfatos/química , Suelo/química , Adsorción , Compuestos Férricos/química , Minerales/química , Espectroscopía de Mossbauer , Hierro/química , Oxidación-Reducción
2.
Environ Sci Process Impacts ; 25(12): 1945-1961, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37971060

RESUMEN

Iron (Fe) oxyhydroxides can be reductively dissolved or transformed under Fe reducing conditions, affecting mineral crystallinity and the sorption capacity for other elements. However, the pathways and rates at which these processes occur under natural soil conditions are still poorly understood. Here, we studied Fe oxyhydroxide transformations during reduction-oxidation cycles by incubating mesh bags containing ferrihydrite or lepidocrocite in paddy soil mesocosms for up to 12 weeks. To investigate the influence of close contact with the soil matrix, mesh bags were either filled with pure Fe minerals or with soil mixed with 57Fe-labeled Fe minerals. Three cycles of flooding (3 weeks) and drainage (1 week) were applied to induce soil redox cycles. The Fe mineral composition was analyzed with Fe K-edge X-ray absorption fine structure spectroscopy, X-ray diffraction analysis and/or 57Fe Mössbauer spectroscopy. Ferrihydrite and lepidocrocite in mesh bags without soil transformed to magnetite and/or goethite, likely catalyzed by Fe(II) released to the pore water by microbial Fe reduction in the surrounding soil. In contrast, 57Fe-ferrihydrite in mineral-soil mixes transformed to a highly disordered mixed-valence Fe(II)-Fe(III) phase, suggesting hindered transformation to crystalline Fe minerals. The 57Fe-lepidocrocite transformed to goethite and small amounts of the highly disordered Fe phase. The extent of reductive dissolution of minerals in 57Fe-mineral-soil mixes during anoxic periods increased with every redox cycle, while ferrihydrite and lepidocrocite precipitated during oxic periods. The results demonstrate that the soil matrix strongly impacts Fe oxyhydroxide transformations when minerals are in close spatial association or direct contact with other soil components. This can lead to highly disordered and reactive Fe phases from ferrihydrite rather than crystalline mineral products and promoted goethite formation from lepidocrocite.


Asunto(s)
Compuestos Férricos , Minerales , Compuestos Férricos/química , Minerales/química , Oxidación-Reducción , Óxido Ferrosoférrico
3.
Environ Sci Technol ; 57(27): 10008-10018, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37364169

RESUMEN

Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/química , Suelo , Espectroscopía de Mossbauer , Oxidación-Reducción , Minerales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...