Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
Cancer Diagn Progn ; 4(3): 239-243, 2024.
Article En | MEDLINE | ID: mdl-38707720

Background/Aim: The present study utilized the three-dimensional histoculture drug response assay (HDRA) to determine the efficacy of recombinant methioninase (rMETase) on tumor tissue resected from patients with late-stage cancer, as a functional biomarker of sensitivity to methionine restriction therapy. Patients and Methods: Resected peritoneal-metastatic cancer, including colorectal cancer, pancreatic cancer, ovarian cancer, and pseudomyxoma were placed on Gelform in RPMI 1640 medium for seven days and treated with rMETase from 2.5 U/ml to 20 U/ml. Cell viability was determined using the MTT assay. A total of 48 patients with late-stage cancer underwent testing for rMETase responsiveness using the HDRA. Results: Colorectal cancer and pseudomyxoma had the highest sensitivity to rMETase. Pancreatic and ovarian cancer also responded to rMETase, but to a lesser degree. Conclusion: Patients with tumors with at least 40% sensitivity to rMETase in the HDRA are being considered as candidates for methionine restriction therapy, which includes the use of rMETase in combination with a low-methionine diet.

2.
Sci Rep ; 14(1): 11325, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760458

The low response rate of immune checkpoint inhibitors (ICIs) is a challenge. The efficacy of ICIs is influenced by the tumour microenvironment, which is controlled by the gut microbiota. In particular, intestinal bacteria and their metabolites, such as short chain fatty acids (SCFAs), are important regulators of cancer immunity; however, our knowledge on the effects of individual SCFAs remains limited. Here, we show that isobutyric acid has the strongest effect among SCFAs on both immune activity and tumour growth. In vitro, cancer cell numbers were suppressed by approximately 75% in humans and mice compared with those in controls. Oral administration of isobutyric acid to carcinoma-bearing mice enhanced the effect of anti-PD-1 immunotherapy, reducing tumour volume by approximately 80% and 60% compared with those in the control group and anti-PD-1 antibody alone group, respectively. Taken together, these findings may support the development of novel cancer therapies that can improve the response rate to ICIs.


Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor , Female , Gastrointestinal Microbiome/drug effects , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Drug Synergism
3.
In Vivo ; 38(3): 1058-1063, 2024.
Article En | MEDLINE | ID: mdl-38688611

BACKGROUND/AIM: Colorectal cancer (CRC) is the third-leading cause of death in the world. Although the prognosis has improved due to improvement of chemotherapy, metastatic CRC is still a recalcitrant disease, with a 5-year survival of only 13%. Irinotecan (IRN) is used as first-line chemotherapy for patients with unresectable CRC. However, there are severe side effects, such as neutropenia and diarrhea, which are dose-limiting. We have previously shown that methionine restriction (MR), effected by recombinant methioninase (rMETase), lowered the effective dose of IRN of colon-cancer cells in vitro. The aim of the present study was to evaluate the efficacy of the combination of low-dose IRN and MR on colon-cancer in nude mice. MATERIALS AND METHODS: HCT-116 colon-cancer cells were cultured and subcutaneously injected into the flank of nude mice. After the tumor size reached approximately 100 mm3, 18 mice were randomized into three groups; Group 1: untreated control on a normal diet; Group 2: high-dose IRN on a normal diet (2 mg/kg, i.p.); Group 3: low-dose IRN (1 mg/kg i.p.) on MR effected by a methionine-depleted diet. RESULTS: There was no significant difference between the control mice and the mice treated with high-dose IRN, without MR. However, low-dose IRN combined with MR was significantly more effective than the control and arrested colon-cancer growth (p=0.03). Body weight loss was reversible in the mice treated by low-dose IRN combined with MR. CONCLUSION: The combination of low-dose IRN and MR acted synergistically in arresting HCT-116 colon-cancer grown in nude mice. The present study indicates the MR has the potential to reduce the effective dose of IRN in the clinic.


Carbon-Sulfur Lyases , Colonic Neoplasms , Irinotecan , Methionine , Mice, Nude , Xenograft Model Antitumor Assays , Animals , Irinotecan/administration & dosage , Irinotecan/pharmacology , Methionine/administration & dosage , Humans , Mice , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/administration & dosage , Camptothecin/therapeutic use , Disease Models, Animal , HCT116 Cells , Cell Line, Tumor , Tumor Burden/drug effects
4.
In Vivo ; 38(3): 1199-1202, 2024.
Article En | MEDLINE | ID: mdl-38688645

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Hair Follicle , Hair , Homocysteine , Methionine , Animals , Methionine/deficiency , Methionine/metabolism , Methionine/administration & dosage , Mice , Hair/growth & development , Hair/metabolism , Homocysteine/metabolism , Hair Follicle/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Mice, Inbred C57BL , Alopecia/metabolism , Alopecia/etiology , Alopecia/pathology , Disease Models, Animal , Diet , Keratinocytes/metabolism
5.
World J Gastrointest Oncol ; 16(2): 557-562, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38425406

BACKGROUND: Hyperbilirubinemia with hepatic metastases is a common complication and a poor prognostic factor for colorectal cancer (CRC). Effective drainage is often impossible before initiating systemic chemotherapy, owing to the liver's diffuse metastatic involvement. Moreover, an appropriate chemotherapeutic approach for the treatment of hyperbilirubinemia is currently unavailable. CASE SUMMARY: The patient, a man in his 50s, presented with progressive fatigue and severe jaundice. Computed tomography revealed multiple hepatic masses with thickened walls in the sigmoid colon, which was pathologically confirmed as a well-differentiated adenocarcinoma. No RAS or BRAF mutations were detected. The Eastern Cooperative Oncology Group (ECOG) performance status (PS) score was 2. Biliary drainage was impossible due to the absence of a dilated bile duct, and panitumumab monotherapy was promptly initiated. Subsequently, the bilirubin level decreased and then normalized, and the patient's PS improved to zero ECOG score after four cycles of therapy without significant adverse events. CONCLUSION: Anti-EGFR antibody monotherapy is a safe and effective treatment for RAS wild-type CRC and hepatic metastases with severe hyperbilirubinemia.

6.
Article En | MEDLINE | ID: mdl-38459188

PURPOSE: Treatment with regorafenib, which inhibits vascular endothelial growth factor (VEGF) receptor, frequently results in hand-foot skin reaction (HFSR), requiring treatment discontinuation or dose reduction. In our prospective study of regorafenib on patients with metastatic colorectal cancer, 17% of patients developed grade 3 HFSR. Herein, we retrospectively examined genetic polymorphisms associated with regorafenib-induced severe HFSR. METHODS: To identify associated polymorphisms, exploratory whole-exome sequencing focusing on factors related to VEGF-mediated signaling pathways was first performed in seven patients each, with grade 3 HFSR and without HFSR. The identified HFSR-associated polymorphisms were analyzed in all the 40 patients. RESULTS: The genotype frequency of rs3025009 G/A or A/A in the gene encoding VEGF-A (VEGFA) in patients with ≥ grade 2 HFSR was significantly higher than in other patients (P = 0.0257, Pc = 0.0771 [Bonferroni correction]). The frequency of C-C motif of chemokine ligand 4-like 2 (CCL4L2) rs3744596 A/T or T/T in patients with grade 3 HFSR was significantly lower than in others (P = 0.00894, Pc = 0.0268). The combination of the risk genotypes VEGFA rs3025009 G/A or A/A and CCL4L2 rs3744596 A/A was significantly associated with a higher incidence of grade 3 (P = 0.000614, Pc = 0.00246) and a longer median progression-free survival (P = 0.0234) than others. CONCLUSIONS: These VEGF-related polymorphisms were found to be associated with HFSR and the survival benefits of regorafenib treatment. TRIAL REGISTRATION NUMBER AND DATE: UMIN000013939, registered on May 12, 2014, when 6 months after the approval by the Institutional Review Board of Showa University.

7.
Anticancer Res ; 44(3): 929-933, 2024 Mar.
Article En | MEDLINE | ID: mdl-38423628

BACKGROUND/AIM: Rapamycin and recombinant methioninase (rMETase) have both shown efficacy to target cancer cells. Rapamycin prevents cancer-cell growth by inhibition of the mTOR protein kinase. rMETase, by degrading methionine, targets the methionine addiction of cancer and has been shown to improve the efficacy of chemotherapy drugs. In the present study, we aimed to determine if a synergy exists between rapamycin and rMETase when used in combination against a colorectal-carcinoma cell line, compared to normal fibroblasts, in vitro. MATERIALS AND METHODS: The half-maximal inhibitory concentrations (IC50) of rapamycin alone and rMETase alone against the HCT-116 human colorectal-cancer cell line and Hs-27 human fibroblasts were determined using the CCK-8 Cell Viability Assay. After calculating the IC50 of each drug, we determined the efficacy of rapamycin and rMETase combined on both HCT-116 and Hs-27. RESULTS: Hs-27 normal fibroblasts were more sensitive to rapamycin than HCT-116 colon-cancer cells (IC50=0.37 nM and IC50=1.38 nM, respectively). HCT-116 cells were more sensitive to rMETase than Hs-27 cells (IC50 0.39 U/ml and IC50 0.96 U/ml, respectively). The treatment of Hs-27 cells with the combination of rapamycin (IC50=0.37 nM) and rMETase (IC50=0.96 U/ml) showed no significant difference in their effect on Hs-27 cell viability compared to the two drugs being used separately. However, the treatment of HCT-116 cells with the combination of rapamycin (IC50=1.38 nM) and rMETase (IC50=0.39 U/ml) was able to decrease cancer-cell viability significantly more than either single-drug treatment. CONCLUSION: Rapamycin and rMETase, when used in combination against colorectal-cancer cells, but not normal fibroblasts, in vitro, have a cancer-specific synergistic effect, suggesting that the combination of these drugs can be used as an effective, targeted cancer therapy.


Colonic Neoplasms , Colorectal Neoplasms , Humans , Sirolimus/pharmacology , Carbon-Sulfur Lyases , Colonic Neoplasms/drug therapy , Methionine , HCT116 Cells , Recombinant Proteins
8.
Anticancer Res ; 44(3): 921-928, 2024 Mar.
Article En | MEDLINE | ID: mdl-38423656

BACKGROUND/AIM: The aim of the present study was to determine the synergy of recombinant methioninase (rMETase) and the anti-tubulin agent eribulin on fibrosarcoma cells, in comparison to normal fibroblasts, in vitro. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells and HS27 human fibroblasts were used for in vitro experiments. Four groups were analyzed in vitro: No-treatment control; eribulin; rMETase; eribulin plus rMETase. Dual-color HT1080 cells which express red fluorescent protein (RFP) in the cytoplasm and green fluorescent protein (GFP) in the nuclei were used to visualize cytoplasmic and nuclear dynamics during treatment. RESULTS: Eribulin combined with rMETase greatly decreased the viability of HT 1080 cells. In contrast, eribulin combined with rMETase did not show synergy on Hs27 normal fibroblasts. Eribulin combined with rMETase also caused more fragmentation of the nucleus than all other treatments. CONCLUSION: The combination treatment of eribulin plus rMETase demonstrated efficacy on fibrosarcoma cells in vitro. In contrast, normal fibroblasts were resistant to this combination, indicating the potential clinical applicability of the treatment.


Carbon-Sulfur Lyases , Fibrosarcoma , Furans , Ketones , Polyether Polyketides , Humans , Carbon-Sulfur Lyases/therapeutic use , Cell Line, Tumor , Fibrosarcoma/drug therapy , Fibroblasts , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use
9.
Cancer Sci ; 115(3): 752-762, 2024 Mar.
Article En | MEDLINE | ID: mdl-38254257

Immune checkpoint inhibitor discovery represents a turning point in cancer treatment. However, the response rates of solid tumors remain ~10%-30%; consequently, prognostic and immune-related adverse event (irAE) predictors are being explored. The programmed cell death protein 1 (PD-1) receptor occupancy (RO) of PD-1 inhibitors depends on the number of peripheral blood lymphocytes and their PD-1 expression levels, suggesting that the RO may be related to efficacy and adverse events. As PD-1 inhibition affects each T-cell subset differently, the RO of each cell population must be characterized. However, relevant data have not been reported, and the prognostic relevance of this parameter is not known. In this study, we aimed to clarify the association between the nivolumab RO in each T-cell population and patient prognosis and reveal the development of irAEs in nivolumab-treated patients. Thirty-two patients were included in the study, and the mean follow-up period was 364 days. The nivolumab RO on effector regulatory T cells (eTregs) was significantly lower in the group that presented clinical benefits, and a significant negative association was observed between PD-1 occupancy on eTregs and all-cause mortality. The results suggest that the nivolumab RO on eTregs may be a prognostic factor in PD-1 inhibitor therapy, implying that the inhibition of PD-1/PD-ligand 1 (PD-L1) signaling on eTregs may attenuate antitumor effects.


Neoplasms , Nivolumab , Humans , Nivolumab/adverse effects , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory/metabolism , Neoplasms/drug therapy , Neoplasms/chemically induced , Immune Checkpoint Inhibitors
10.
Cancer Diagn Progn ; 4(1): 30-33, 2024.
Article En | MEDLINE | ID: mdl-38173656

Background/Aim: Pancreatic cancer is a recalcitrant disease with 5-year survival of only 12%. Improved mouse models of pancreatic cancer are critical for discovery of effective therapeutics. Materials and Methods: Orthotopic mouse nude-mouse models of pancreatic cancer were established with the human pancreatic-cancer cell line Panc-1 expressing green fluorescent protein (GFP) by transplanting tumor fragments into the pancreas, using the procedure of surgical orthotopic implantation (SOI). Four weeks after establishment of the orthotopic models, the mice were imaged with the Analytik Jena UVP Biospectrum Advanced with a very-narrow-band-width excitation at 487 nm and peak emission at 513 nm. Results: Non-invasive fluorescence imaging of the mice implanted with Panc-1-GFP showed a very bright tumor in the area of the pancreas and peritoneal cavity. The skin background autofluorescence was absent. When a laparotomy was performed on the mouse for open imaging, the tumor on the pancreas was clearly imaged. There was very clear concordance of the non-invasive image and the image obtained during laparotomy. Conclusion: A precise orthotopic mouse model of pancreatic cancer was developed in which there was high concordance between non-invasive and invasive fluorescence imaging due to the ultra-bright signal and ultra-low background using very-narrow-band-width laser fluorescence excitation. This model can be used for high-throughput in vivo screening for improved therapeutics for pancreatic cancer.

11.
Cancer Immunol Immunother ; 73(2): 23, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38280026

BACKGROUND: Recently, intestinal bacteria have attracted attention as factors affecting the prognosis of patients with cancer. However, the intestinal microbiome is composed of several hundred types of bacteria, necessitating the development of an analytical method that can allow the use of this information as a highly accurate biomarker. In this study, we investigated whether the preoperative intestinal bacterial profile in patients with esophageal cancer who underwent surgery after preoperative chemotherapy could be used as a biomarker of postoperative recurrence of esophageal cancer. METHODS: We determined the gut microbiome of the patients using 16S rRNA metagenome sequencing, followed by statistical analysis. Simultaneously, we performed a machine learning analysis using a random forest model with hyperparameter tuning and compared the data obtained. RESULTS: Statistical and machine learning analyses revealed two common bacterial genera, Butyricimonas and Actinomyces, which were abundant in cases with recurrent esophageal cancer. Butyricimonas primarily produces butyrate, whereas Actinomyces are oral bacteria whose function in the gut is unknown. CONCLUSION: Our results indicate that Butyricimonas spp. may be a biomarker of postoperative recurrence of esophageal cancer. Although the extent of the involvement of these bacteria in immune regulation remains unknown, future research should investigate their presence in other pathological conditions. Such research could potentially lead to a better understanding of the immunological impact of these bacteria on patients with cancer and their application as biomarkers.


Esophageal Neoplasms , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Neoplasm Recurrence, Local , Bacteria/genetics , Esophageal Neoplasms/surgery , Biomarkers
12.
Biochem Biophys Res Commun ; 695: 149418, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38176171

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Brain Neoplasms , Glioma , Temozolomide , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , DNA Modification Methylases/pharmacology , DNA Modification Methylases/therapeutic use , DNA Repair Enzymes/genetics , Drug Resistance, Neoplasm , Glioma/drug therapy , Glioma/genetics , Methionine/pharmacology , Mice, Nude , O(6)-Methylguanine-DNA Methyltransferase , Racemethionine/pharmacology , Temozolomide/therapeutic use , Temozolomide/pharmacology , Tumor Suppressor Proteins/genetics
13.
Anticancer Res ; 44(1): 23-29, 2024 Jan.
Article En | MEDLINE | ID: mdl-38159965

BACKGROUND/AIM: The response rate to immune checkpoint inhibitors (ICIs) is approximately 10%-30% and only in a few cancer types. In the present study, we determined whether non-classical monocytes (NCMs) could enhance ICI efficacy in colon cancer using a syngeneic mouse model. MATERIALS AND METHODS: The MC38 C57BL/6 mouse colon cancer model was used. Cells collected from the bone marrow of C57BL/6 mice were cultured, and NCMs were fractionated by cell sorting and administered via the tail veins to the mice implanted with MC38 cells. The anti-mouse PD-L1 antibody was administered three times, and tumor volume and overall survival were observed. RESULTS: More tumors were eradicated and more complete response occurred, after cotreatment with ICIs and NCMs than after treatment with ICIs alone. Moreover, no efficacy was observed when NCMs were administered alone. CONCLUSION: NCMs enhance ICI efficacy. The underlying mechanisms and clinical applications will be studied in the future.


Colonic Neoplasms , Immune Checkpoint Inhibitors , Mice , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Monocytes , Mice, Inbred C57BL , Colonic Neoplasms/drug therapy , Disease Models, Animal , B7-H1 Antigen
14.
Anticancer Res ; 44(1): 31-35, 2024 Jan.
Article En | MEDLINE | ID: mdl-38159986

BACKGROUND/AIM: Irinotecan (IRN), a topoisomerase I inhibitor and pro-drug of SN-38, is first-line treatment of colon cancer as part of FOLFIRI and FOLFOXIRI combination chemotherapy. However, IRN causes dose-limiting adverse events such as neutropenia and diarrhea. Dose reductions are sometimes required, which reduce efficacy. Recombinant methioninase (rMETase) targets the fundamental basis of cancer, methionine addiction, known as the Hoffman effect, and enhances the efficacy of numerous chemotherapy drugs. The present study determined the efficacy of rMETase when administered in combination with IRN. MATERIALS AND METHODS: Cell viability was assessed by cultivating the HCT-116 human colorectal cancer cell line in 96-well plates at 1×103 cells per well in Dulbecco's modified Eagle's medium (DMEM). Subsequently, HCT-116 cells were treated with increasing concentrations of SN-38, the active form of IRN, ranging from 0.5 nM to 32 nM, and/or rMETase ranging from 0.125 to 8 U/ml. After treatment for 72 h, the half-maximal inhibitory concentration (IC50) of SN-38 alone and rMETase alone for HCT-116 cells were determined. Using the IC50 concentration of rMETase, we determined the IC50 of SN-38 in combination with rMETase. Cell viability was determined with the cell-counting Kit-8 with the WST-8 reagent.. RESULTS: The IC50 of rMETase alone for the HCT-116 cells was 0.55 U/ml, and the IC50 of IRN (SN-38) alone was 3.50 nM. rMETase at 0.55 U/ml lowered the IC50 of SN-38 to 0.232 nM (p<0.0001), a 15-fold reduction. CONCLUSION: rMETase and IRN are strongly synergistic, giving rise to the possibility of lowering the effective dose of IRN for the treatment of patients with colon cancer, thereby reducing its severe toxicity. This new strategy will allow more patients with cancer to be effectively treated with IRN.


Colonic Neoplasms , Humans , Irinotecan/pharmacology , Colonic Neoplasms/drug therapy , Carbon-Sulfur Lyases , Tumor Cells, Cultured , Recombinant Proteins
15.
In Vivo ; 38(1): 69-72, 2024.
Article En | MEDLINE | ID: mdl-38148053

BACKGROUND/AIM: Breast-cancer metastasis to the brain is an intractable disease. To discover improved therapy for this disease, we developed a precise non-invasively-imageable orthotopic nude-mouse model, using very-narrow-band-width laser fluorescence excitation. MATERIALS AND METHODS: Female nu/nu nude mice, aged 4-8 weeks, were inoculated through the midline of the skull with triple-negative human MDA-MB-231 breast cancer cells (5×105) expressing red fluorescent protein (RFP). The mice were imaged with the Analytik Jena UVP Biospectrum Advanced at 520 nm excitation with peak emission at 605 nm. RESULTS: Three weeks after injection of MDA-MB-231-RFP cells in the brain, non-invasive fluorescence images of the breast tumor growing on the brain were obtained. The images of the tumor were very bright, with well-defined margins with no detectable skin autofluorescence background. Images obtained at various angles showed that the extent of the tumor margins could be precisely measured. A skin flap over the skull confirmed that the tumor was growing on the surface of the brain which is a frequent occurrence in breast cancer. CONCLUSION: A precise orthotopic model of RFP-expressing breast-cancer metastasis to the brain was developed that could be non-invasively imaged with very-narrow-band-width laser excitation, resulting in an ultra-bright, ultra-low-background signal. The model will be useful in discovering improved therapeutics for this recalcitrant disease.


Breast Neoplasms , Melanoma , Neoplasms, Second Primary , Skin Neoplasms , Mice , Female , Humans , Animals , Red Fluorescent Protein , Breast Neoplasms/diagnostic imaging , Mice, Nude , Disease Models, Animal , Optical Imaging , Brain/diagnostic imaging , Green Fluorescent Proteins , Cell Line, Tumor
16.
In Vivo ; 38(1): 253-258, 2024.
Article En | MEDLINE | ID: mdl-38148095

BACKGROUND/AIM: Methionine addiction is a fundamental and universal hallmark of cancer, termed the Hoffman effect. Methionine addiction of cancer is greater than glucose addiction, termed the Warburg effect, as shown by the comparison of PET imaging with [11C]methionine and [18F]fluorodeoxyglucose. The aim of the present study was to determine whether [11C]methionine PET (MET-PET) images could be a biomarker of methionine addiction of cancer and potential response to methionine-restriction-based combination chemotherapy. PATIENTS AND METHODS: In the present study a patient with invasive lobular carcinoma of the breast metastatic to axillary lymph nodes was imaged by both MET-PET and [18F]fluorodeoxyglucose PET (FDG-PET) before and after combination treatment with methionine restriction, comprising a low-methionine diet and methioninase, along with first-line chemotherapy. RESULTS: MET-PET gave a much stronger and precise image of the patient's metastatic axillary lymph nodes than FDG-PET. The patient had a complete response to methionine restriction-based chemotherapy as shown by MET-PET. CONCLUSION: MET-PET imaging is a biomarker of methionine-addicted cancer and potential response to methionine-restriction-based chemotherapy.


Breast Neoplasms , Methionine , Humans , Female , Fluorodeoxyglucose F18 , Biomarkers, Tumor , Positron-Emission Tomography/methods , Racemethionine , Breast Neoplasms/pathology , Drug Therapy, Combination , Radiopharmaceuticals
17.
PLoS One ; 18(12): e0296291, 2023.
Article En | MEDLINE | ID: mdl-38134182

The methionine addiction of cancer cells is known as the Hoffman effect. While non-cancer cells in culture can utilize homocysteine in place of methionine for cellular growth, most cancer cells require exogenous methionine for proliferation. It has been suggested that a biochemical basis of this effect is the increased utilization of methionine for S-adenosylmethionine, the major methyl donor for a variety of cellular methyltransferases. Recent studies have pointed to the role of S-adenosylmethionine-dependent protein arginine methyltransferases (PRMTs) in cell proliferation and cancer. To further understand the biochemical basis of the methionine addiction of cancer cells, we compared protein arginine methylation in two previously described isogenic cell lines, a methionine-addicted 143B human osteosarcoma cell line and its less methionine-dependent revertant. Previous work showed that the revertant cells were significantly less malignant than the parental cells. In the present study, we utilized antibodies to detect the asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) products of PRMTs in polypeptides from cellular extracts and purified histone preparations of these cell lines fractionated by SDS-PAGE. Importantly, we observed little to no differences in the banding patterns of ADMA- and SDMA-containing species between the osteosarcoma parental and revertant cell lines. Furthermore, enzymatic activity assays using S-adenosyl-ʟ-[methyl-3H] methionine, recombinantly purified PRMT enzymes, cell lysates, and specific PRMT inhibitors revealed no major differences in radiolabeled polypeptides on SDS-PAGE gels. Taken together, these results suggest that changes in protein arginine methylation may not be major contributors to the Hoffman effect and that other consequences of methionine addiction may be more important in the metastasis and malignancy of osteosarcoma and potentially other cancers.


Methionine , Osteosarcoma , Humans , Methionine/metabolism , S-Adenosylmethionine/metabolism , Arginine/metabolism , Racemethionine/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Methylation , Peptides/metabolism
18.
Cancer Genomics Proteomics ; 20(6suppl): 679-685, 2023 Dec.
Article En | MEDLINE | ID: mdl-38035708

BACKGROUND/AIM: The fundamental and general hallmark of cancer cells, methionine addiction, termed the Hoffman effect, is due to overuse of methionine for highly-increased transmethylation reactions. In the present study, we tested if the combination efficacy of recombinant methioninase (rMETase) and a methionine analogue, ethionine, could eradicate osteosarcoma cells and down-regulate the expression of c-MYC. MATERIALS AND METHODS: 143B osteosarcoma cells and Hs27 normal human fibroblasts were tested. The efficacy of rMETase alone and ethionine, alone and in their combination, on cell viability was determined with the WST-8 assay on 143B cells and Hs27 cells. c-MYC expression was examined with western immunoblotting and compared in 143B cells treated with/without rMETase, ethionine, or the combination of both rMETase and ethionine. RESULTS: 143B cells were more sensitive to both rMETase and ethionine than Hs 27 cells, with the following IC50s: rMETase (143B: 0.22 U/ml; Hs27: 0.82 U/ml); ethionine (143B: 0.24 mg/ml; Hs27: 0.42 mg/ml). The combination of rMETase and ethionine synergistically eradicated 143B cells, lowering the IC50 for ethionine 14-fold compared to ethionine alone (p<0.001). In contrast, Hs27 fibroblasts were relatively resistant to the combination. The expression of c-MYC was significantly down-regulated only by the combination of rMETase and ethionine in 143B cells (p<0.001). CONCLUSION: In the present study, we showed, for the first time, the synergistic combination efficacy of rMETase and ethionine on osteosarcoma cells in contrast to normal fibroblasts, which were relatively resistant. The combination of rMETase and ethionine down-regulated c-MYC expression in the cancer cells. The present results indicate the combination of rMETase and ethionine may reduce the malignancy of osteosarcoma cells and can be a potential future clinical strategy.


Bone Neoplasms , Osteosarcoma , Humans , Bone Neoplasms/drug therapy , Ethionine/therapeutic use , Methionine/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Racemethionine , Recombinant Proteins/therapeutic use
19.
Cancer Diagn Progn ; 3(6): 655-659, 2023.
Article En | MEDLINE | ID: mdl-37927805

Background/Aim: Regorafenib is a multi-kinase inhibitor, targeting vascular endothelial growth factor receptor 2, fibroblast growth factor receptor 1 and other oncogenic kinases. Regorafenib has efficacy in metastatic colon cancer, but has severe dose-limiting toxicities which cause patients to stop taking the drug. The aim of the present study was to determine if recombinant methioninase (rMETase) could lower the effective concentration of regorafenib in vitro against a colorectal-cancer cell line. Materials and Methods: Firstly, we examined the half-maximal inhibitory concentration (IC50) of regorafenib alone and rMETase alone for the HCT-116 human colorectal-cancer cell line. After that, using the IC50 concentration of each drug, we investigated the efficacy of the combination of regorafenib and rMETase. Results: While both methioninase alone (IC50=0.61 U/ml) and regorafenib alone (IC50=2.26 U/ml) inhibited the viability of HCT-116 cells, the combination of the two agents was more than twice as effective as either alone. Addition of rMETase at 0.61 U/ml lowered the IC50 of regorafenib from 2.26 µM to 1.46 µM. Conclusion: rMETase and regorafenib are synergistic, giving rise to the possibility of lowering the effective dose of regorafenib in patients, thereby reducing its severe toxicity, allowing more cancer patients to be treated with regorafenib.

20.
Cancer Diagn Progn ; 3(6): 649-654, 2023.
Article En | MEDLINE | ID: mdl-37927811

Background/Aim: Methionine restriction by diet and recombinant methioninase (rMETase) are effective for cancer therapy by themselves or combined with chemotherapy drugs. We previously showed that oral administration of rMETase-producing Escherichia coli JM109 (E. coli JM109-rMETase) can be installed in the mouse microbiome and inhibit colon-cancer growth in a syngeneic mouse model. In the present report, we investigated the efficacy of oral administration of E. coli JM109-rMETase in an orthotopic triple-negative breast cancer (TNBC) cell-line mouse model. Materials and Methods: First, we established orthotopic 4T1 mouse triple-negative breast cancer on an abdominal mammary gland in female athymic nu/nu nude mice aged 4-6 weeks. After tumor growth, 15 mice were divided into three groups of 5. Group 1 was administered phosphate-buffered saline (PBS) orally by gavage twice daily as a control; Group 2 was administered non-recombinant E. coli JM109 competent cells orally by gavage twice daily as a control; Group 3 was administered E. coli JM109-rMETase cells by gavage twice daily for two weeks. Tumor size was measured with calipers twice per week. On day 15, blood methionine level was examined using an HPLC method. Results: Oral administration of E. coli JM109-rMETase inhibited 4T1 TNBC growth significantly compared to the PBS and E. coli JM109 control groups. On day 15, the blood methionine level was significantly lower in the mice administered E. coli JM109-rMETase than in the PBS control. Conclusion: E. coli JM109-rMETase lowered blood methionine levels and inhibited TNBC growth in an orthotopic cell-line mouse model, suggesting future clinical potential against a highly recalcitrant cancer.

...