Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Biol Chem ; 300(4): 107138, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447794

Short tandem repeats are inherently unstable during DNA replication depending on repeat length, and the expansion of the repeat length in the human genome is responsible for repeat expansion disorders. Pentanucleotide AAGGG and ACAGG repeat expansions in intron 2 of the gene encoding replication factor C subunit 1 (RFC1) cause cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) and other phenotypes of late-onset cerebellar ataxia. Herein, we reveal the structural polymorphism of the RFC1 repeats associated with CANVAS in vitro. Single-stranded AAGGG repeat DNA formed a hybrid-type G-quadruplex, whereas its RNA formed a parallel-type G-quadruplex with three layers. The RNA of the ACAGG repeat formed hairpin structure comprising C-G and G-C base pairs with A:A and GA:AG mismatched repeats. Furthermore, both pathogenic repeat RNAs formed more rigid structures than those of the nonpathogenic repeat RNAs. These findings provide novel insights into the structural polymorphism of the RFC1 repeats, which may be closely related to the disease mechanism of CANVAS.


Cerebellar Ataxia , DNA Repeat Expansion , Peripheral Nervous System Diseases , Replication Protein C , Vestibular Diseases , Humans , Cerebellar Ataxia/genetics , Cerebellar Ataxia/metabolism , G-Quadruplexes , Microsatellite Repeats , Polymorphism, Genetic , Replication Protein C/genetics , Replication Protein C/metabolism , Replication Protein C/chemistry , RNA/chemistry , RNA/genetics , RNA/metabolism , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Vestibular Diseases/genetics , Vestibular Diseases/metabolism
3.
Biosci Biotechnol Biochem ; 71(8): 1858-64, 2007 Aug.
Article En | MEDLINE | ID: mdl-17690472

Bacillus cereus 809A and Burkholderia sp. 711C were isolated from soil. These strains demonstrate hydrolysis activity towards prochiral 2-phenyl-1,3-propanediol diacetate and accumulated the corresponding chiral monoacetates into the reaction mixture. When 2-phenyl 1,3-propanediol diacetate was used as a substrate, the produced monoacetates with Burkholderia sp. 711C were obtained in a racemic form but that produced by Bacillus cereus 809A showed an excess of the (S)-form. The resting cell reaction revealed that for Bacillus cereus 809A, there was an enrichment of one of the enantiomers of the monoacetate such that the enantiomeric excess (e.e.) of the (S)-form was over 95%. The purified enzyme from Bacillus cereus 809A hydrolyzed diacetate to monoacetate, and the e.e. value of the (S)-form increased by prolonged reaction in a way similar to the resting cell reaction. From N-terminal amino acids, this esterase is conserved in some strains of Bacillus for which the genomic sequences have been reported.


Bacillus cereus/enzymology , Burkholderia/enzymology , Esterases/metabolism , Propylene Glycols/metabolism , Bacillus cereus/isolation & purification , Burkholderia/isolation & purification , Esterases/isolation & purification , Hydrolysis , Soil Microbiology , Stereoisomerism
...