Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Environ Int ; 180: 108227, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37826893

RESUMEN

Zinc (Zn) is an essential metal present in numerous enzymes throughout the body, playing a vital role in animal and human health. However, the increasing use of zinc oxide nanomaterials (ZnONPs) in a diverse range of products has raised concerns regarding their potential impacts on health and the environment. Despite these concerns, the toxicity of ZnONP exposure on animal health remain poorly understood. To help address this knowledge gap, we have developed a highly sensitive oxidative stress (OS) biosensor zebrafish capable of detecting cell/tissue-specific OS responses to low doses of various oxidative stressors, including Zn, in a live fish embryo. Using live-imaging analysis with this biosensor zebrafish embryo, we discovered that the olfactory sensory neurons in the brain are especially sensitive to ZnOP exposure. Furthermore, through studies monitoring neutrophil migration and neuronal activation in the embryonic brain and via behaviour analysis, we have found that sub-lethal doses of ZnONPs (ranging from 0.033 to 1 mg/L nominal concentrations), which had no visible effect on embryo growth or morphology, cause significant localised inflammation, disrupting the neurophysiology of olfactory brain tissues and ultimately impaired olfaction-mediated behaviour. Collectively, these findings establish a potent and important effect mechanism for ZnONP toxicity, indicating the olfactory sensory system as the primary target for ZnONPs as an environmental toxicant in aquatic environments. Our result also highlights that even low doses of ZnONPs can have detrimental effects on the olfactory sensory system, surpassing previous expectations. The importance of olfaction in environment sensing, sex behaviours and overall fitness across species raises concerns about the potential impact of ZnONPs on olfaction-mediated brain function and behaviour in animals and humans. Our study emphasises the need for greater consideration of the potential risks associated with these nanomaterials.


Asunto(s)
Nanopartículas , Óxido de Zinc , Animales , Humanos , Óxido de Zinc/toxicidad , Pez Cebra , Olfato , Zinc/toxicidad , Órganos de los Sentidos
3.
Evodevo ; 13(1): 9, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365204

RESUMEN

The Gymnotiformes, also known as the South American or Neotropical knifefishes, include the strongly electric Electrophorus electricus and many other weakly electric species. These fish possess specialised electric organs that are able to release electric discharges into the water, for electrolocation and communication, and sometimes for predation and defence. All Gymnotiform species possess a myogenic electric organ (mEO) derived from the muscle tissue, and members of the Apteronotidae family uniquely possess a neurogenic electric organ (nEOs) derived from the nervous tissue. A mEO may consist of 'Type A' electrocytes that develop within the tail muscle (for example, in Apteronotus leptorhynchus), or 'Type B' electrocytes that develop below the tail muscle (for example, in Brachyhypopomus gauderio). In this review, we discuss the diversity in the anatomy, electric discharge and development of electric organs found in different Gymnotiform species, as well as the ecological and environmental factors that have likely contributed to this diversity. We then describe various hypotheses regarding the evolution of electric organs, and discuss the potential evolutionary origin of the nEO: a pair of nerve cords that are located on either side of the aorta in B. gauderio, and which may have expanded and developed into a nEO in the Apteronotidae family during its evolution from a common ancestral species. Finally, we compare potential Gymnotiform phylogenies and their supporting evidence.

4.
Front Pharmacol ; 13: 718072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264948

RESUMEN

Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.

5.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35023540

RESUMEN

Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.


Asunto(s)
Estrógenos/metabolismo , Neurogénesis , Neuroglía/citología , Bulbo Olfatorio/embriología , Animales , Antagonistas del Receptor de Estrógeno/farmacología , Fulvestrant/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Estrógenos/antagonistas & inhibidores , Sinapsis/metabolismo , Sinapsis/fisiología , Pez Cebra
6.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34951463

RESUMEN

Using the self-fertilizing mangrove killifish, we characterized two mutants, shorttail (stl) and balltail (btl). These mutants showed abnormalities in the posterior notochord and muscle development. Taking advantage of a highly inbred isogenic strain of the species, we rapidly identified the mutated genes, noto and msgn1 in the stl and btl mutants, respectively, using a single lane of RNA sequencing without the need of a reference genome or genetic mapping techniques. Next, we confirmed a conserved morphant phenotype in medaka and demonstrate a crucial role of noto and msgn1 in cell sorting between the axial and paraxial part of the tail mesoderm. This novel system could substantially accelerate future small-scale forward-genetic screening and identification of mutations. Therefore, the mangrove killifish could be used as a complementary system alongside existing models for future molecular genetic studies.


Asunto(s)
Desarrollo Embrionario/genética , Fundulidae/genética , Notocorda/crecimiento & desarrollo , Cola (estructura animal)/crecimiento & desarrollo , Animales , Mapeo Cromosómico , Embrión no Mamífero , Fundulidae/crecimiento & desarrollo , Pruebas Genéticas , Genoma/genética , Mutación/genética , Notocorda/metabolismo , Fenotipo , Filogenia , Autofecundación , Cola (estructura animal)/metabolismo
7.
Aquat Toxicol ; 237: 105864, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34118774

RESUMEN

Effluents from wastewater treatment works (WwTW) exhibit both temporal and spatial variation in oestrogenicity, however few studies have attempted to quantify how this variation affects biological responses in fish. Here we used an oestrogen-responsive green fluorescent protein (ERE-GFP) transgenic zebrafish (Danio rerio) to quantify oestrogenic activity and health effects for exposure to three different WwTW effluents. Endpoints measured included survival/hatching rate, GFP induction (measured in target tissues or gfp mRNA induction in whole embryos) and vtg mRNA induction in whole embryos. Exposure to one of the study effluents (at 100%), resulted in some mortality, and exposure to all three effluents (at 50% and 100%) caused decreases in hatching rates. Higher levels of vtg mRNA corresponded with higher levels of steroidal oestrogens in the different effluents, with lowest-observed-effect concentrations (LOECs) between 31 ng/L and 39 ng/L oestradiol equivalents (EEQs). Tissue patterns of GFP expression for all three WwTWs effluents reflected the known targets for steroidal oestrogens and for some other oestrogenic chemicals likely present in those effluents (i.e. nonylphenol or bisphenolic compounds). GFP induction was similarly responsive to vtg mRNA induction (a well-established biomarker for oestrogen exposure). We thus demonstrate the ERE-GFP transgenic zebrafish as an effective model for monitoring the oestrogenic potency and health effects for exposure to complex mixtures of chemicals contained within WwTW effluents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Proteínas Fluorescentes Verdes/genética , Larva , Estaciones del Año , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética
8.
Front Pharmacol ; 12: 721924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975467

RESUMEN

In this review, we will discuss zebrafish as a model for studying mechanisms of human fetal alcohol spectrum disorders (FASDs). We will overview the studies on FASDs so far and will discuss with specific focus on the mechanisms by which alcohol alters cell migration during the early embryogenesis including blastula, gastrula, and organogenesis stages which later cause morphological defects in the brain and other tissues. FASDs are caused by an elevated alcohol level in the pregnant mother's body. The symptoms of FASDs include microcephaly, holoprosencephaly, craniofacial abnormalities, and cardiac defects with birth defect in severe cases, and in milder cases, the symptoms lead to developmental and learning disabilities. The transparent zebrafish embryo offers an ideal model system to investigate the genetic, cellular, and organismal responses to alcohol. In the zebrafish, the effects of alcohol were observed in many places during the embryo development from the stem cell gene expression at the blastula/gastrula stage, gastrulation cell movement, morphogenesis of the central nervous system, and neuronal development. The data revealed that ethanol suppresses convergence, extension, and epiboly cell movement at the gastrula stage and cause the failure of normal neural plate formation. Subsequently, other cell movements including neurulation, eye field morphogenesis, and neural crest migration are also suppressed, leading to the malformation of the brain and spinal cord, including microcephaly, cyclopia, spinal bifida, and craniofacial abnormalities. The testing cell migration in zebrafish would provide convenient biomarkers for the toxicity of alcohol and other related chemicals, and investigate the molecular link between the target signaling pathways, following brain development.

9.
iScience ; 23(11): 101674, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33145484

RESUMEN

The Arabian killifish, Aphanius dispar, is a small tropical teleost fish living in wide range of habitats in sea water and fresh water in the Middle East. Here, we report extraordinary fluorescent pigment cells in the Arabian killifish embryo. These cells appear brown in transmitted light, yellowish white in reflected light, and as strong fluorescence in GFP and RFP filters. TEM and confocal microscopy analyses show the fluorescence emanates from leucosome-like pigment organelles. The cells express the gene encoding GTP cyclohydrolase (gch), a marker for leucophores and xanthophore. Gene knockdown and knockout of gch using morpholino or CRISPR-Cas9 induced loss of fluorescence in these embryos, indicating a crucial role of the enzyme and the associated pterine biosynthesis pathway in the generation of the fluorescence. We concluded that these cells are a highly fluorescent subtype of leucophores and have named them as fluoroleucophores.

10.
Aquat Toxicol ; 225: 105547, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32623180

RESUMEN

Some chemicals in the environment disrupt thyroid hormone (TH) systems leading to alterations in organism development, but their effect mechanisms are poorly understood. In fish, this has been limited by a lack of fundamental knowledge on thyroid gene ontogeny and tissue expression in early life stages. Here we established detailed expression profiles for a suite of genes in the hypothalamic-pituitary-thyroid (HPT) axis of zebrafish (Danio rerio) between 24-120 h post fertilisation (hpf) and quantified their responses following exposure to 3,3',5-triiodo-L-thyronine (T3) using whole mount in situ hybridisation (WISH) and qRT-PCR (using whole-body extracts). All of the selected genes in the HPT axis demonstrated dynamic transcript expression profiles across the developmental stages examined. The expression of thyroid receptor alpha (thraa) was observed in the brain, gastrointestinal tract, craniofacial tissues and pectoral fins, while thyroid receptor beta (thrb) expression occurred in the brain, otic vesicles, liver and lower jaw. The TH deiodinases (dio1, dio2 and dio3b) were expressed in the liver, pronephric ducts and brain and the patterns differed depending on life stage. Both dio1 and dio2 were also expressed in the intestinal bulb (96-120 hpf), and dio2 expression occurred also in the pituitary (48-120 hpf). Exposure of zebrafish embryo-larvae to T3 (30 and 100 µg L-1) for periods of 48, 96 or 120 hpf resulted in the up-regulation of thraa, thrb, dio3b, thyroid follicle synthesis proteins (pax8) and corticotropin-releasing hormone (crhb) and down-regulation of dio1, dio2, glucuronidation enzymes (ugt1ab) and thyroid stimulating hormone (tshb) (assessed via qRT-PCR) and responses differed across life stage and tissues. T3 induced thraa expression in the pineal gland, pectoral fins, brain, somites, gastrointestinal tract, craniofacial tissues, liver and pronephric ducts. T3 enhanced thrb expression in the brain, jaw cartilage and intestine, while thrb expression was suppressed in the liver. T3 exposure suppressed the transcript levels of dio1 and dio2 in the liver, brain, gastrointestinal tract and craniofacial tissues, while dio2 signalling was also suppressed in the pituitary gland. Dio3b expression was induced by T3 exposure in the jaw cartilage, pectoral fins and brain. The involvement of THs in the development of numerous body tissues and the responsiveness of these tissues to T3 in zebrafish highlights their potential vulnerability to exposure to environmental thyroid-disrupting chemicals.


Asunto(s)
Triyodotironina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Hormona Liberadora de Corticotropina , Hipotálamo/efectos de los fármacos , Larva/efectos de los fármacos , Hipófisis/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Tironinas/metabolismo , Tironinas/farmacología , Tirotropina , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
11.
Dev Biol ; 466(1-2): 99-108, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32687892

RESUMEN

South American Gymnotiform knifefish possess electric organs that generate electric fields for electro-location and electro-communication. Electric organs in fish can be derived from either myogenic cells (myogenic electric organ/mEO) or neurogenic cells (neurogenic electric organ/nEO). To date, the embryonic development of EOs has remained obscure. Here we characterize the development of the mEO in the Gymnotiform bluntnose knifefish, Brachyhypopomus gauderio. We find that EO primordial cells arise during embryonic stages in the ventral edge of the tail myotome, translocate into the ventral fin and develop into syncytial electrocytes at early larval stages. We also describe a pair of thick nerve cords that flank the dorsal aorta, the location and characteristic morphology of which are reminiscent of the nEO in Apteronotid species, suggesting a common evolutionary origin of these tissues. Taken together, our findings reveal the embryonic origins of the mEO and provide a basis for elucidating the mechanisms of evolutionary diversification of electric charge generation by myogenic and neurogenic EOs.


Asunto(s)
Evolución Biológica , Órgano Eléctrico/embriología , Embrión no Mamífero/embriología , Gymnotiformes/embriología , Animales
12.
Environ Int ; 133(Pt A): 105138, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645010

RESUMEN

BACKGROUND: Reactive oxygen species (ROS) arise as a result from, and are essential in, numerous cellular processes. ROS, however, are highly reactive and if left unneutralised by endogenous antioxidant systems, can result in extensive cellular damage and/or pathogenesis. In addition, exposure to a wide range of environmental stressors can also result in surplus ROS production leading to oxidative stress (OS) and downstream tissue toxicity. OBJECTIVES: Our aim was to produce a stable transgenic zebrafish line, unrestricted by tissue-specific gene regulation, which was capable of providing a whole organismal, real-time read-out of tissue-specific OS following exposure to a wide range of OS-inducing environmental contaminants and conditions. This model could, therefore, serve as a sensitive and specific mechanistic in vivo biomarker for all environmental conditions that result in OS. METHODS: To achieve this aim, we exploited the pivotal role of the electrophile response element (EpRE) as a globally-acting master regulator of the cellular response to OS. To test tissue specificity and quantitative capacity, we selected a range of chemical contaminants known to induce OS in specific organs or tissues, and assessed dose-responsiveness in each using microscopic measures of mCherry fluorescence intensity. RESULTS: We produced the first stable transgenic zebrafish line Tg (3EpRE:hsp70:mCherry) with high sensitivity for the detection of cellular RedOx imbalances, in vivo in near-real time. We applied this new model to quantify OS after exposure to a range of environmental conditions with high resolution and provided quantification both of compound- and tissue-specific ROS-induced toxicity. DISCUSSION: Our model has an extremely diverse range of potential applications not only for biomonitoring of toxicants in aqueous environments, but also in biomedicine for identifying ROS-mediated mechanisms involved in the progression of a number of important human diseases, including cancer.


Asunto(s)
Elementos de Respuesta Antioxidante/fisiología , Técnicas Biosensibles , Estrés Oxidativo/fisiología , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Elementos de Respuesta Antioxidante/genética , Antioxidantes , Biomarcadores , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua/química , Pez Cebra/genética
13.
Aquat Toxicol ; 209: 99-112, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30763833

RESUMEN

Brominated flame retardants are known to disrupt thyroid hormone (TH) homeostasis in several vertebrate species, but the molecular mechanisms underlying this process and their effects on TH-sensitive tissues during the stages of early development are not well characterised. In this study, we exposed zebrafish (Danio rerio) embryo-larvae to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and tetrabromobisphenol A (TBBPA) via the water for 96 h from fertilisation and assessed for lethality, effects on development and on the expression of a suite of genes in the hypothalamic-pituitary-thyroid (HPT) axis via both real time quantitative PCR (qRT-PCR) on whole body extracts and whole mount in situ hybridisation (WISH) to identify tissue targets. The 96-h lethal median concentration (96h-LC50) for TBBPA was 0.9 µM and mortality was preceded by retardation of development (smaller animals) and morphological deformities including, oedemas in the pericardial region and tail, small heads, swollen yolk sac extension. Exposure to BDE-47 did not affect zebrafish embryo-larvae survival at any of the concentrations tested (1-100 µM) but caused yolk sac and craniofacial deformities, a curved spine and shorter tail at the highest exposure concentration. TBBPA exposure resulted in higher levels of mRNAs for genes encoding deiodinases (dio1), transport proteins (ttr), the thyroid follicle synthesis protein paired box 8 (pax8) and glucuronidation enzymes (ugt1ab) and lower levels of dio3b mRNAs in whole body extracts, with responses varying with developmental stage. BDE-47 exposure resulted in higher levels of thrb, dio1, dio2, pax8 and ugt1ab mRNAs and lower levels of ttr mRNAs in whole body extracts. TBBPA and BDE-47 therefore appear to disrupt the TH system at multiple levels, increasing TH conjugation and clearance, disrupting thyroid follicle development and altering TH transport. Compensatory responses in TH production/ metabolism by deiodinases were also evident. WISH analyses further revealed that both TBBPA and BDE-47 caused tissue-specific changes in thyroid receptor and deiodinase enzyme expression, with the brain, liver, pronephric ducts and craniofacial tissues appearing particularly responsive to altered TH signalling. Given the important role of TRs in mediating the actions of THs during key developmental processes and deiodinases in the control of peripheral TH levels, these transcriptional alterations may have implications for TH sensitive target genes involved in brain and skeletal development. These findings further highlight the potential vulnerability of the thyroid system to disruption by BFRs during early developmental windows.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/toxicidad , Especificidad de Órganos/efectos de los fármacos , Bifenilos Polibrominados/toxicidad , Pez Cebra/embriología , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Larva/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/toxicidad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Cell Rep ; 25(8): 1997-2007.e7, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462998

RESUMEN

Although Astyanax mexicanus surface fish regenerate their hearts after injury, their Pachón cave-dwelling counterparts cannot and, instead, form a permanent fibrotic scar, similar to the human heart. Myocardial proliferation peaks at similar levels in both surface fish and Pachón 1 week after injury. However, in Pachón, this peak coincides with a strong scarring and immune response, and ultimately, cavefish cardiomyocytes fail to replace the scar. We identified lrrc10 to be upregulated in surface fish compared with Pachón after injury. Similar to cavefish, knockout of lrrc10 in zebrafish impairs heart regeneration without affecting wound cardiomyocyte proliferation. Furthermore, using quantitative trait locus (QTL) analysis, we have linked the degree of heart regeneration to three loci in the genome, identifying candidate genes fundamental to the difference between scarring and regeneration. Our study provides evidence that successful heart regeneration entails a delicate interplay between cardiomyocyte proliferation and scarring.


Asunto(s)
Characidae/fisiología , Corazón/fisiología , Regeneración/fisiología , Animales , Proliferación Celular , Characidae/genética , Cinética , Mutación/genética , Miocardio/citología , Miocitos Cardíacos/citología , Sitios de Carácter Cuantitativo/genética , Regulación hacia Arriba , Cicatrización de Heridas , Pez Cebra/fisiología , Proteínas de Pez Cebra/metabolismo
15.
Environ Sci Technol ; 52(11): 6656-6665, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29738667

RESUMEN

Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 µg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.


Asunto(s)
Compuestos de Bencidrilo , Pez Cebra , Animales , Estrógenos , Humanos , Fenoles
16.
Sci Rep ; 8(1): 2699, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426849

RESUMEN

Estrogen plays fundamental roles in a range of developmental processes and exposure to estrogen mimicking chemicals has been associated with various adverse health effects in both wildlife and human populations. Estrogenic chemicals are found commonly as mixtures in the environment and can have additive effects, however risk analysis is typically conducted for single-chemicals with little, or no, consideration given for an animal's exposure history. Here we developed a transgenic zebrafish with a photoconvertable fluorophore (Kaede, green to red on UV light exposure) in a skin pigment-free mutant element (ERE)-Kaede-Casper model and applied it to quantify tissue-specific fluorescence biosensor responses for combinations of estrogen exposures during early life using fluorescence microscopy and image analysis. We identify windows of tissue-specific sensitivity to ethinylestradiol (EE2) for exposure during early-life (0-5 dpf) and illustrate that exposure to estrogen (EE2) during 0-48 hpf enhances responsiveness (sensitivity) to different environmental estrogens (EE2, genistein and bisphenol A) for subsequent exposures during development. Our findings illustrate the importance of an organism's stage of development and estrogen exposure history for assessments on, and possible health risks associated with, estrogen exposure.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Etinilestradiol/efectos adversos , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente/metabolismo , Compuestos de Bencidrilo/metabolismo , Estrógenos/efectos adversos , Estrógenos/metabolismo , Estrógenos/fisiología , Etinilestradiol/metabolismo , Genisteína/metabolismo , Fenoles/metabolismo , Contaminantes Químicos del Agua/efectos adversos , Pez Cebra/metabolismo
17.
Environ Sci Technol ; 51(21): 12796-12805, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29016128

RESUMEN

Bisphenol A (BPA), a chemical incorporated into plastics and resins, has estrogenic activity and is associated with adverse health effects in humans and wildlife. Similarly structured BPA analogues are widely used but far less is known about their potential toxicity or estrogenic activity in vivo. We undertook the first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP). The rank order for toxicity was BPAF > BPA > BPF > BPS. Developmental deformities for larval exposures included cardiac edema, spinal malformation, and craniofacial deformities and there were distinct differences in the effects and potencies between the different bisphenol chemicals. These effects, however, occurred only at concentrations between 1.0 and 200 mg/L which exceed those in most environments. All bisphenol compounds induced estrogenic responses in Tg(ERE:Gal4ff)(UAS:GFP) zebrafish that were inhibited by coexposure with ICI 182 780, demonstrating an estrogen receptor dependent mechanism. Target tissues included the heart, liver, somite muscle, fins, and corpuscles of Stannius. The rank order for estrogenicity was BPAF > BPA = BPF > BPS. Bioconcentration factors were 4.5, 17.8, 5.3, and 0.067 for exposure concentrations of 1.0, 1.0, 0.10, and 50 mg/L for BPA, BPF, BPAF, and BPS, respectively. We thus show that these BPA alternatives induce similar toxic and estrogenic effects to BPA and that BPAF is more potent than BPA, further highlighting health concerns regarding the use of BPA alternatives.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Sulfonas/toxicidad , Teratógenos/toxicidad , Animales , Estrógenos , Humanos , Larva , Pez Cebra
18.
Nanotoxicology ; 10(9): 1276-86, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27350075

RESUMEN

Some nanoparticles (NPs) may induce adverse health effects in exposed organisms, but to date the evidence for this in wildlife is very limited. Silver nanoparticles (AgNPs) can be toxic to aquatic organisms, including fish, at concentrations relevant for some environmental exposures. We applied whole mount in-situ hybridisation (WISH) in zebrafish embryos and larvae for a suite of genes involved with detoxifying processes and oxidative stress, including metallothionein (mt2), glutathionine S-transferase pi (gstp), glutathionine S-transferase mu (gstm1), haem oxygenase (hmox1) and ferritin heavy chain 1 (fth1) to identify potential target tissues and effect mechanisms of AgNPs compared with a bulk counterpart and ionic silver (AgNO3). AgNPs caused upregulation in the expression of mt2, gstp and gstm1 and down regulation of expression of both hmox1 and fth1 and there were both life stage and tissue-specific responses. Responding tissues included olfactory bulbs, lateral line neuromasts and ionocytes in the skin with the potential for effects on olfaction, behaviour and maintenance of ion balance. Silver ions induced similar gene responses and affected the same target tissues as AgNPs. AgNPs invoked levels of target gene responses more similar to silver treatments compared to coated AgNPs indicating the responses seen were due to released silver ions. In the Nrf2 zebrafish mutant, expression of mt2 (24 hpf) and gstp (3 dpf) were either non-detectable or were at lower levels compared with wild type zebrafish for exposures to AgNPs, indicating that these gene responses are controlled through the Nrf2-Keap pathway.


Asunto(s)
Nanopartículas del Metal , Factor 2 Relacionado con NF-E2 , Bulbo Olfatorio , Plata , Piel , Contaminantes Químicos del Agua , Proteínas de Pez Cebra , Pez Cebra , Animales , Conducta Animal/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Expresión Génica/efectos de los fármacos , Hibridación in Situ , Larva , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Factor 2 Relacionado con NF-E2/genética , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Plata/química , Plata/toxicidad , Piel/citología , Piel/efectos de los fármacos , Propiedades de Superficie , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Environ Sci Technol ; 50(12): 6536-45, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27227508

RESUMEN

Rapid embryogenesis, together with genetic similarities with mammals, and the desire to reduce mammalian testing, are major incentives for using the zebrafish model in chemical screening and testing. Transgenic zebrafish, engineered for identifying target gene expression through expression of fluorophores, have considerable potential for both high-content and high-throughput testing of chemicals for endocrine activity. Here we generated an estrogen responsive transgenic zebrafish model in a pigment-free "Casper" phenotype, facilitating identification of target tissues and quantification of these responses in whole intact fish. Using the ERE-GFP-Casper model we show chemical type and concentration dependence for green fluorescent protein (GFP) induction and both spatial and temporal responses for different environmental estrogens tested. We also developed a semiautomated (ArrayScan) imaging and image analysis system that we applied to quantify whole body fluorescence responses for a range of different estrogenic chemicals in the new transgenic zebrafish model. The zebrafish model developed provides a sensitive and highly integrative system for identifying estrogenic chemicals, their target tissues and effect concentrations for exposures in real time and across different life stages. It thus has application for chemical screening to better direct health effects analysis of environmental estrogens and for investigating the functional roles of estrogens in vertebrates.


Asunto(s)
Animales Modificados Genéticamente , Pez Cebra/metabolismo , Animales , Estrógenos/metabolismo , Estrona/metabolismo , Proteínas de Pez Cebra/genética
20.
PLoS One ; 9(1): e84786, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24497921

RESUMEN

Bone morphogenetic proteins (Bmp) are major players in the formation of the vertebrate body plan due to their crucial role in patterning of the dorsal-ventral (DV) axis. Despite the highly conserved nature of Bmp signalling in vertebrates, the consequences of changing this pathway can be species-specific. Here, we report that Bmp plays an important role in epiboly, yolk syncytial layer (YSL) movements, and anterior-posterior (AP) axis formation in embryos of the self-fertilizing mangrove killifish, Kryptolebias marmoratus. Stage and dose specific exposures of embryos to the Bmp inhibitor dorsomorphin (DM) produced three distinctive morphologies, with the most extreme condition creating the splitbody phenotype, characterised by an extremely short AP axis where the neural tube, somites, and notochord were bilaterally split. In addition, parts of caudal neural tissues were separated from the main body and formed cell islands in the posterior region of the embryo. This splitbody phenotype, which has not been reported in other animals, shows that modification of Bmp may lead to significantly different consequences during development in other vertebrate species.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Proteínas de Peces/fisiología , Peces Killi/embriología , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Embrión no Mamífero/metabolismo , Proteínas de Peces/antagonistas & inhibidores , Peces Killi/metabolismo , Tubo Neural/embriología , Fenotipo , Pirazoles/farmacología , Pirimidinas/farmacología , Somitos/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA