Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gene Regul Mech ; 1867(3): 195046, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876159

RESUMEN

shRNA-mediated strategy of miRNA overexpression based on RNA Polymerase III (Pol III) expression cassettes is widely used for miRNA functional studies. For some miRNAs, e.g., encoded in the genome as a part of a polycistronic miRNA cluster, it is most likely the only way for their individual stable overexpression. Here we have revealed that expression of miRNAs longer than 19 nt (e.g. 23 nt in length hsa-miR-93-5p) using such approach could be accompanied by undesired predominant generation of 5' end miRNA isoforms (5'-isomiRs). Extra U residues (up to five) added by Pol III at the 3' end of the transcribed shRNA during transcription termination could cause a shift in the Dicer cleavage position of the shRNA. This results in the formation of 5'-isomiRs, which have a significantly altered seed region compared to the initially encoded canonical hsa-miR-93-5p. We demonstrated that the commonly used qPCR method is insensitive to the formation of 5'-isomiRs and cannot be used to confirm miRNA overexpression. However, the predominant expression of 5'-isomiRs without three or four first nucleotides instead of the canonical isoform could be disclosed based on miRNA-Seq analysis. Moreover, mRNA sequencing data showed that the 5'-isomiRs of hsa-miR-93-5p presumably regulate their own mRNA targets. Thus, omitting miRNA-Seq analysis may lead to erroneous conclusions regarding revealed mRNA targets and possible molecular mechanisms in which studied miRNA is involved. Overall, the presented results show that structures of shRNAs for stable overexpression of miRNAs requires careful design to avoid generation of undesired 5'-isomiRs.

2.
J Biomed Res ; : 1-16, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38828853

RESUMEN

Systemic lupus erythematosus (SLE) is characterized by a systemic dysfunction of the innate and adaptive immune systems, leading to an attack on healthy tissues of the body. During the development of SLE, pathogenic features, such as the formation of autoantibodies to self-nuclear antigens, caused tissue damage including necrosis and fibrosis, with an increased expression of type Ⅰ interferon (IFN) regulated genes. Treatment of lupus with immunosuppressants and glucocorticoids, which are used as the standard therapy, is not effective enough and causes side effects. As an alternative, more effective immunotherapies have been developed, including monoclonal and bispecific antibodies that target B cells, T cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Encouraging results have been observed in clinical trials with some of these therapies. Furthermore, a chimeric antigen receptor T cells (CAR-T) therapy has emerged as the most effective, safe, and promising treatment option for SLE, as demonstrated by successful pilot studies. Additionally, emerging evidence suggests that gut microbiota dysbiosis may play a significant role in the severity of SLE, and the use of methods to normalize the gut microbiota, particularly fecal microbiota transplantation (FMT), opens up new opportunities for effective treatment of SLE.

3.
Biochimie ; 225: 1-9, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703943

RESUMEN

Inhibition of autophagy is one of the hallmarks of the SARS-CoV-2 infection. Recently it was reported that SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes via interaction with VPS39 thus preventing binding of homotypic fusion and protein sorting (HOPS) complex to RAB7 GTPase. Here we report that myelin basic protein (MBP), a major structural component of the myelin sheath, binds ORF3a and is colocalized with it in mammalian cells. Co-expression of MBP with ORF3a restores autophagy in mammalian cells, inhibited by viral protein. Our data suggest that basic charge of MBP drives suppression of ORF3a-induced autophagy inhibition as its deaminated variants lost ability to bind ORF3a and counteract autophagy blockade. These results together with our recent findings, indicating that MBP interacts with structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3) and Sec1/Munc18-1 family members, may suggest protective role of the MBP in terms of the maintaining of protein traffic and autophagosome-lysosome fusion machinery in oligodendrocytes during SARS-CoV-2 infection. Finally, our data may indicate that deimination of MBP observed in the patients with multiple sclerosis (MS) may contribute to the previously reported worser outcomes of COVID-19 and increase of post-COVID-19 neurologic symptoms in patients with MS.

4.
J Biomed Res ; 38(3): 222-232, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738269

RESUMEN

The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.

5.
Front Pharmacol ; 15: 1351655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449806

RESUMEN

Introduction: The acute respiratory distress syndrome (ARDS), secondary to viral pneumonitis, is one of the main causes of high mortality in patients with COVID-19 (novel coronavirus disease 2019)-ongoing SARS-CoV-2 infection- reached more than 0.7 billion registered cases. Methods: Recently, we elaborated a non-surgical and reproducible method of the unilateral total diffuse alveolar damage (DAD) of the left lung in ICR mice-a publicly available imitation of the ARDS caused by SARS-CoV-2. Our data read that two C-C chemokine receptor 5 (CCR5) ligands, macrophage inflammatory proteins (MIPs) MIP-1α/CCL3 and MIP-1ß/CCL4, are upregulated in this DAD model up to three orders of magnitude compared to the background level. Results: Here, we showed that a nonpeptide compound TAK-779, an antagonist of CCR5/CXCR3, readily prevents DAD in the lung with a single injection of 2.5 mg/kg. Histological analysis revealed reduced peribronchial and perivascular mononuclear infiltration in the lung and mononuclear infiltration of the wall and lumen of the alveoli in the TAK-779-treated animals. Administration of TAK-779 decreased the 3-5-fold level of serum cytokines and chemokines in animals with DAD, including CCR5 ligands MIP-1α/ß, MCP-1, and CCL5. Computed tomography revealed rapid recovery of the density and volume of the affected lung in TAK-779-treated animals. Discussion: Our pre-clinical data suggest that TAK-779 is more effective than the administration of dexamethasone or the anti-IL6R therapeutic antibody tocilizumab, which brings novel therapeutic modality to TAK-779 and other CCR5 inhibitors for the treatment of virus-induced hyperinflammation syndromes, including COVID-19.

6.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473856

RESUMEN

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.


Asunto(s)
Furina , Glicoproteínas de Membrana , Animales , Furina/metabolismo , Proteína Básica de Mielina , Proteínas de la Membrana/metabolismo , Péptidos , Mamíferos/metabolismo
7.
Front Immunol ; 15: 1301378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495874

RESUMEN

Asymmetric cell division is a fundamental process conserved throughout evolution, employed by both prokaryotic and eukaryotic organisms. Its significance lies in its ability to govern cell fate and facilitate the generation of diverse cell types. Therefore, attaining a detailed mechanistic understanding of asymmetric cell division becomes essential for unraveling the complexities of cell fate determination in both healthy and pathological conditions. However, the role of asymmetric division in T-cell biology has only recently been unveiled. Here, we provide an overview of the T-cell asymmetric division field with the particular emphasis on experimental methods and models with the aim to guide the researchers in the selection of appropriate in vitro/in vivo models to study asymmetric division in T cells. We present a comprehensive investigation into the mechanisms governing the asymmetric division in various T-cell subsets underscoring the importance of the asymmetry in fate-determining factor segregation and transcriptional and epigenetic regulation. Furthermore, the intricate interplay of T-cell receptor signaling and the asymmetric division geometry are explored, shedding light on the spatial organization and the impact on cellular fate.


Asunto(s)
División Celular Asimétrica , Epigénesis Genética , Diferenciación Celular , Subgrupos de Linfocitos T , Inmunoterapia
8.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298160

RESUMEN

Neutrophil Extracellular Traps (NETs) have been implicated in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) pathogenesis. The myeloperoxidase-deoxyribonucleic acid (MPO-DNA) complex and nucleosomes are serum markers of NETosis. The aim of this study was to assess these NETosis parameters as markers for SLE and APS diagnosis and their association with clinical features and disease activity. A total of 138 people were included in the cross-sectional study: 30 with SLE without APS, 47 with SLE and APS, 41 patients with primary antiphospholipid syndrome (PAPS), and 20 seemingly healthy individuals. Serum MPO-DNA complex and nucleosome levels were determined via an enzyme-linked immunosorbent assay (ELISA). Informed consent was obtained from all subjects involved in the study. The Ethics Committee of the V.A. Nasonova Research Institute of Rheumatology (Protocol No. 25 dated 23 December 2021) approved the study. In patients with SLE without APS, the levels of the MPO-DNA complex were significantly higher compared to patients with SLE with APS, with PAPS, and healthy controls (p < 0.0001). Among patients with a reliable diagnosis of SLE, 30 had positive values of the MPO-DNA complex, of whom 18 had SLE without APS, and 12 had SLE with APS. Patients with SLE and positive MPO-DNA complex levels were significantly more likely to have high SLE activity (χ2 = 5.25, p = 0.037), lupus glomerulonephritis (χ2 = 6.82, p = 0.009), positive antibodies to dsDNA (χ2 = 4.82, p = 0.036), and hypocomplementemia (χ2 = 6.72, p = 0.01). Elevated MPO-DNA levels were observed in 22 patients with APS: 12 with SLE with APS and 10 with PAPS. There were no significant associations between positive levels of the MPO-DNA complex and clinical and laboratory manifestations of APS. The concentration of nucleosomes was significantly lower in the group of SLE patients (±APS) compared to controls and PAPS (p < 0.0001). In SLE patients, the frequency of low nucleosome levels was associated with high SLE activity (χ2 = 13.4, p < 0.0001), lupus nephritis (χ2 = 4.1, p = 0.043), and arthritis (χ2 = 3.89, p = 0.048). An increase in the specific marker of NETosis, the MPO-DNA complex, was found in the blood serum of SLE patients without APS. Elevated levels of the MPO-DNA complex can be regarded as a promising biomarker of lupus nephritis, disease activity, and immunological disorders in SLE patients. Lower levels of nucleosomes were significantly associated with SLE (±APS). Low nucleosome levels were more common in patients with high SLE activity, lupus nephritis, and arthritis.


Asunto(s)
Síndrome Antifosfolípido , Artritis , Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nucleosomas , Estudios Transversales , Artritis/complicaciones , ADN , Biomarcadores
9.
Cells ; 12(6)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36980286

RESUMEN

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.


Asunto(s)
Biotina , Proteína Básica de Mielina , Proteómica , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Proteínas , Proteómica/métodos , Mapas de Interacción de Proteínas
10.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768413

RESUMEN

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Asunto(s)
Esclerosis Múltiple , Proteína Básica de Mielina , Animales , Humanos , Proteína Básica de Mielina/metabolismo , Complejo de la Endopetidasa Proteasomal , Ligandos , Fragmentos de Péptidos , Péptidos/química , Esclerosis Múltiple/genética , Epítopos Inmunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
11.
Biochemistry (Mosc) ; 88(12): 2063-2072, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38462450

RESUMEN

Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ubiquitinación , Reparación del ADN , Daño del ADN
12.
Bioengineering (Basel) ; 9(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551014

RESUMEN

Harnessing the human immune system as a foundation for therapeutic technologies capable of recognizing and killing tumor cells has been the central objective of anti-cancer immunotherapy. In recent years, there has been an increasing interest in improving the effectiveness and accessibility of this technology to make it widely applicable for adoptive cell therapies (ACTs) such as chimeric antigen receptor T (CAR-T) cells, tumor infiltrating lymphocytes (TILs), dendritic cells (DCs), natural killer (NK) cells, and many other. Automated, scalable, cost-effective, and GMP-compliant bioreactors for production of ACTs are urgently needed. The primary efforts in the field of GMP bioreactors development are focused on closed and fully automated point-of-care (POC) systems. However, their clinical and industrial application has not yet reached full potential, as there are numerous obstacles associated with delicate balancing of the complex and often unpredictable cell biology with the need for precision and full process control. Here we provide a brief overview of the existing and most advanced systems for ACT manufacturing, including cell culture bags, G-Rex flasks, and bioreactors (rocking motion, stirred-flask, stirred-tank, hollow-fiber), as well as semi- and fully-automated closed bioreactor systems.

13.
Front Immunol ; 13: 971045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268015

RESUMEN

FOXP1 is ubiquitously expressed in the human body and is implicated in both physiological and pathological processes including cancer. However, despite its importance the role of FOXP1 in T-cells has not been extensively studied. Although relatively few phenotypic and mechanistic details are available, FOXP1 role in T-cell quiescence and differentiation of CD4+ subsets has recently been established. FOXP1 prevents spontaneous T-cell activation, preserves memory potential, and regulates the development of follicular helper and regulatory T-cells. Moreover, there is growing evidence that FOXP1 also regulates T-cell exhaustion. Altogether this makes FOXP1 a crucial and highly undervalued regulator of T-cell homeostasis. In this review, we discuss the biology of FOXP1 with a focus on discoveries made in T-cells in recent years.


Asunto(s)
Factores de Transcripción Forkhead , Proteínas Represoras , Humanos , Factores de Transcripción Forkhead/genética , Diferenciación Celular , Activación de Linfocitos , Linfocitos T Reguladores
14.
Biomedicines ; 10(10)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36289607

RESUMEN

Traumatic injury of the spinal cord is still one of the most challenging problems in the neurosurgical practice. Despite a long history of implementation of translational medicine in the field of spinal cord injury (SCI), it remains one of the most frequent causes of human disability and a critical situation for world healthcare systems. Here, we used our rat model of the of unilateral controlled SCI induced by a cryoinjury, which consistently reproduces glial scarring and posttraumatic cyst formation, and specifically evaluated histological, bioimaging and cytokine data. We propose a 10-grade scoring scale, which can objectively estimate the extent of damage of the experimental SCI according to the magnetic resonance imaging (MRI) results. It provides a homogeneous and reliable visual control of the dynamics of the posttraumatic processes, which makes it possible to clearly distinguish the extent of early damage, the formation of glial scars and the development of posttraumatic syringomyelic cysts. The concentration of cytokines and chemokines in the plasma following the experimental SCI increased up to two orders of magnitude in comparison with intact animals, suggesting that a traumatic injury of the spinal cord was accompanied by a remarkable cytokine storm. Our data suggested that the levels of IL-1α, IL-1ß, TNFα, GRO/KC, G-CSF, IFNγ and IL-13 may be considered as a reliable prognostic index for SCI. Finally, we demonstrated that MRI together with plasma cytokines level directly correlated and reliably predicted the clinical outcome following SCI. The present study brings novel noninvasive and intravital methods for the evaluation of the therapeutic efficacy of SCI treatment protocols, which may be easily translated into the clinical practice.

15.
Front Pharmacol ; 13: 1111340, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36642990

RESUMEN

To simulate acute lung injury (ALI) in SD male rats they we administered intratracheally with lipopolysaccharide (LPS) followed by hyperventilation of the lungs (HVL), which lead to functional changes in the respiratory system and an increase in the blood serum concentration of inflammatory cytokines. LPS + HVL after 4 h lead to pronounced histological signs of lung damage. We have studied the effectiveness of Derinat® when administered intramuscularly at dose of 7.5 mg/kg for 8 days in the ALI model. Derinat® administration lead to an increase in the concentration of most of the studied cytokines in a day. In the ALI model the administration of Derinat® returned the concentration of cytokines to its original values already 48 h after LPS + HVL, and also normalized the parameters of pulmonary respiration in comparison with animals without treatment. By the eighth day after LPS + HVL, respiratory parameters and cytokine levels, as well as biochemical and hematological parameters did not differ between groups, while histological signs of residual effects of lung damage were found in all animals, and were more pronounced in Derinat® group, which may indicate stimulation of the local immune response. Thus, the administration of Derinat® stimulates the immune response, has a pronounced protective effect against cytokinemia and respiratory failure caused by ALI, has immunomodulatory effect, and also stimulates a local immune response in lung tissues. Thus, Derinat® is a promising treatment for ALI.

16.
Biomolecules ; 11(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34827627

RESUMEN

Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.


Asunto(s)
Proteína Básica de Mielina , Regulación de la Expresión Génica , Humanos , Vaina de Mielina , ARN Mensajero
17.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638337

RESUMEN

Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.

18.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681871

RESUMEN

Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.


Asunto(s)
Lesión Pulmonar Aguda/patología , Citocinas/química , Péptidos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Péptidos/química , Péptidos/farmacología , Unión Proteica , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores
19.
Biochemistry (Mosc) ; 86(Suppl 1): S71-S95, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33827401

RESUMEN

Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.


Asunto(s)
Código de Histonas , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo
20.
Cell Chem Biol ; 28(8): 1192-1205.e9, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33675681

RESUMEN

Despite almost 40 years having passed from the initial discovery of ubiquitin (Ub), fundamental questions related to its intracellular metabolism are still enigmatic. Here we utilized fluorescent tracking for monitoring ubiquitin turnover in mammalian cells, resulting in obtaining qualitatively new data. In the present study we report (1) short Ub half-life estimated as 4 h; (2) for a median of six Ub molecules per substrate as a dynamic equilibrium between Ub ligases and deubiquitinated enzymes (DUBs); (3) loss on average of one Ub molecule per four acts of engagement of polyubiquitinated substrate by the proteasome; (4) direct correlation between incorporation of Ub into the distinct type of chains and Ub half-life; and (5) critical influence of the single lysine residue K27 on the stability of the whole Ub molecule. Concluding, our data provide a comprehensive understanding of ubiquitin-proteasome system dynamics on the previously unreachable state of the art.


Asunto(s)
Fluorescencia , Ubiquitina/metabolismo , Células Cultivadas , Citometría de Flujo , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Oxazinas/síntesis química , Oxazinas/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...