Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Elife ; 122024 Apr 26.
Article En | MEDLINE | ID: mdl-38669177

Gene expression is known to be affected by interactions between local genetic variation and DNA accessibility, with the latter organized into three-dimensional chromatin structures. Analyses of these interactions have previously been limited, obscuring their regulatory context, and the extent to which they occur throughout the genome. Here, we undertake a genome-scale analysis of these interactions in a genetically diverse population to systematically identify global genetic-epigenetic interaction, and reveal constraints imposed by chromatin structure. We establish the extent and structure of genotype-by-epigenotype interaction using embryonic stem cells derived from Diversity Outbred mice. This mouse population segregates millions of variants from eight inbred founders, enabling precision genetic mapping with extensive genotypic and phenotypic diversity. With 176 samples profiled for genotype, gene expression, and open chromatin, we used regression modeling to infer genetic-epigenetic interactions on a genome-wide scale. Our results demonstrate that statistical interactions between genetic variants and chromatin accessibility are common throughout the genome. We found that these interactions occur within the local area of the affected gene, and that this locality corresponds to topologically associated domains (TADs). The likelihood of interaction was most strongly defined by the three-dimensional (3D) domain structure rather than linear DNA sequence. We show that stable 3D genome structure is an effective tool to guide searches for regulatory elements and, conversely, that regulatory elements in genetically diverse populations provide a means to infer 3D genome structure. We confirmed this finding with CTCF ChIP-seq that revealed strain-specific binding in the inbred founder mice. In stem cells, open chromatin participating in the most significant regression models demonstrated an enrichment for developmental genes and the TAD-forming CTCF-binding complex, providing an opportunity for statistical inference of shifting TAD boundaries operating during early development. These findings provide evidence that genetic and epigenetic factors operate within the context of 3D chromatin structure.


Chromatin , Epigenesis, Genetic , Genome , Animals , Mice , Chromatin/metabolism , Chromatin/genetics , Genetic Variation , Embryonic Stem Cells/metabolism
2.
Alcohol Clin Exp Res ; 46(6): 941-960, 2022 06.
Article En | MEDLINE | ID: mdl-35383961

BACKGROUND: A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS: We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS: We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS: Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.


Alcoholism , Collaborative Cross Mice , Alcoholism/genetics , Animals , Chromosome Mapping/methods , Collaborative Cross Mice/genetics , Ethanol/pharmacology , Genome-Wide Association Study , Male , Mice , Quantitative Trait Loci
3.
J Exp Med ; 213(11): 2259-2267, 2016 10 17.
Article En | MEDLINE | ID: mdl-27811054

Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging.


Aging/physiology , Hematopoietic Stem Cells/cytology , Lymphocytes/cytology , Multipotent Stem Cells/cytology , Animals , Cell Cycle/genetics , Cell Differentiation , Cell Lineage/genetics , Cells, Cultured , Cellular Senescence/genetics , Female , Hematopoietic Stem Cells/metabolism , Lymphocytes/metabolism , Mice, Inbred C57BL , Multipotent Stem Cells/metabolism , Myeloid Cells/cytology , Single-Cell Analysis , Transcriptome/genetics
4.
Nat Commun ; 7: 12166, 2016 07 11.
Article En | MEDLINE | ID: mdl-27397025

The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML.


Chromatin Assembly and Disassembly , Leukemia, Myeloid, Acute/etiology , Animals , Cell Transformation, Neoplastic , Epigenesis, Genetic , Female , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Multipotent Stem Cells/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Transcriptome
...