Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
RSC Med Chem ; 14(2): 341-355, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36846371

RESUMEN

Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 µM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.

2.
RSC Med Chem ; 14(1): 144-153, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36760748

RESUMEN

The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.

3.
Phys Chem Chem Phys ; 25(3): 1728-1733, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36594655

RESUMEN

Among non-covalent interactions, B-H⋯π and C-H⋯π hydrogen bonding is rather weak and less studied. Nevertheless, since both can affect the energetics of protein-ligand binding, their understanding is an important prerequisite for reliable predictions of affinities. Through a combination of high-resolution X-ray crystallography and quantum-chemical calculations on carbonic anhydrase II/carborane-based inhibitor systems, this paper provides the first example of B-H⋯π hydrogen bonding in a protein-ligand complex. It shows that the B-H⋯π interaction is stabilized by dispersion, followed by electrostatics. Furthermore, it demonstrates that the similar C-H⋯π interaction is twice as strong, with a slightly smaller contribution of dispersion and a slightly higher contribution of electrostatics. Such a detailed insight will facilitate the rational design of future protein ligands, controlling these types of non-covalent interactions.


Asunto(s)
Anhidrasa Carbónica II , Sulfonamidas , Ligandos , Sulfanilamida , Cristalografía por Rayos X
4.
Nat Commun ; 13(1): 5464, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115853

RESUMEN

Schlafen 11 (SLFN11) is an interferon-inducible antiviral restriction factor with tRNA endoribonuclease and DNA binding functions. It is recruited to stalled replication forks in response to replication stress and inhibits replication of certain viruses such as the human immunodeficiency virus 1 (HIV-1) by modulating the tRNA pool. SLFN11 has been identified as a predictive biomarker in cancer, as its expression correlates with a beneficial response to DNA damage inducing anticancer drugs. However, the mechanism and interdependence of these two functions are largely unknown. Here, we present cryo-electron microscopy (cryo-EM) structures of human SLFN11 in its dimeric apoenzyme state, bound to tRNA and in complex with single-strand DNA. Full-length SLFN11 neither hydrolyses nor binds ATP and the helicase domain appears in an autoinhibited state. Together with biochemical and structure guided mutagenesis studies, our data give detailed insights into the mechanism of endoribonuclease activity as well as suggestions on how SLFN11 may block stressed replication forks.


Asunto(s)
Antineoplásicos , Antivirales , Microscopía por Crioelectrón , Endorribonucleasas , Proteínas Nucleares , Adenosina Trifosfato , Antineoplásicos/metabolismo , Antivirales/metabolismo , Apoenzimas , ADN , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Interferones , Proteínas Nucleares/metabolismo , ARN de Transferencia/metabolismo
5.
Chembiochem ; 22(18): 2741-2761, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33939874

RESUMEN

This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).


Asunto(s)
Compuestos de Boro/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/química , Sitios de Unión , Compuestos de Boro/metabolismo , Compuestos de Boro/uso terapéutico , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Humanos , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Compuestos Organometálicos/química , Relación Estructura-Actividad , Sulfonamidas/química
6.
Sci Rep ; 11(1): 9650, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958693

RESUMEN

Intraoperative indocyanine green (ICG) fluorescence angiography has gained popularity and acceptance in many surgical fields for the real-time assessment of tissue perfusion. Although vasopressors have the potential to preclude an accurate assessment of tissue perfusion, there is a lack of literature with regards to its effect on ICG fluorescence angiography. An experimental porcine model was used to expose the small bowel for quantitative tissue perfusion assessment. Three increasing doses of norepinephrine infusion (0.1, 0.5, and 1.0 µg/kg/min) were administered intravenously over a 25-min interval. Time-to-peak fluorescence intensity (TTP) was the primary outcome. Secondary outcomes included absolute fluorescence intensity and local capillary lactate (LCL) levels. Five large pigs (mean weight: 40.3 ± 4.24 kg) were included. There was no significant difference in mean TTP (in seconds) at baseline (4.23) as compared to the second (3.90), third (4.41), fourth (4.60), and fifth ICG assessment (5.99). As a result of ICG accumulation, the mean and the maximum absolute fluorescence intensity were significantly different as compared to the baseline assessment. There was no significant difference in LCL levels (in mmol/L) at baseline (0.74) as compared to the second (0.82), third (0.64), fourth (0.60), and fifth assessment (0.62). Increasing doses of norepinephrine infusion have no significant influence on bowel perfusion using ICG fluorescence angiography.


Asunto(s)
Angiografía con Fluoresceína/métodos , Verde de Indocianina , Norepinefrina/farmacología , Vasoconstrictores/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Infusiones Intravenosas , Inyecciones Intravenosas , Intestinos/irrigación sanguínea , Periodo Intraoperatorio , Laparotomía , Norepinefrina/administración & dosificación , Porcinos , Vasoconstrictores/administración & dosificación
7.
Chempluschem ; 86(3): 351, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369232

RESUMEN

Invited for this month's cover is a collaboration from three institutes from the Czech Academy of Sciences: Institute of Inorganic Chemistry, Institute of Organic Chemistry and Biochemistry, and Institute of Molecular Genetics, and the University of Pardubice. The cover picture shows a family of potent and selective CA IX inhibitors that combines the structural motif of a bulky inorganic cobalt bis(dicarbollide) polyhedral ion with a propylsulfonamido anchor group. Read the full text of the article at 10.1002/cplu.202000574.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Neoplasias , Anhidrasa Carbónica IX , Cobalto , Humanos
8.
Chempluschem ; 86(3): 352-363, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32955786

RESUMEN

Carbonic anhydrase IX (CAIX) is an enzyme expressed on the surface of cells in hypoxic tumors. It plays a role in regulation of tumor pH and promotes thus tumor cell survival and occurrence of metastases. Here, derivatives of the cobalt bis(dicarbollide)(1-) anion are reported that are based on substitution at the carbon sites of the polyhedra by two alkylsulfonamide groups differing in the length of the aliphatic connector (from C1 to C4, n=1-4), which were prepared by cobalt insertion into the 7-sulfonamidoalkyl-7,8-dicarba-nido-undecaborate ions. Pure meso- and rac-diastereoisomeric forms were isolated. The series is complemented with monosubstituted species (n=2). Synthesis by a direct method furnished similar derivatives (n=2, 3), which are chlorinated at the B(8,8') boron sites. All compounds inhibited CAIX with subnanomolar inhibition constants and showed high selectivity for CAIX. The best inhibitory properties were observed for the compound with n= 3 and two substituents present in rac-arrangement with Ki =20 pM and a selectivity index of 668. X-ray crystallography was used to study interactions of these compounds with the active site of CAIX on the structural level.


Asunto(s)
Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/química , Cobalto/química , Complejos de Coordinación/química , Sulfonamidas/química , Sitios de Unión , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Dominio Catalítico , Complejos de Coordinación/metabolismo , Complejos de Coordinación/uso terapéutico , Cristalografía por Rayos X , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología
9.
J Enzyme Inhib Med Chem ; 35(1): 1800-1810, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32962427

RESUMEN

Human carbonic anhydrase IX (CA IX), a protein specifically expressed on the surface of solid tumour cells, represents a validated target both for anticancer therapy and diagnostics. We recently identified sulfonamide dicarbaboranes as promising inhibitors of CA IX with favourable activities both in vitro and in vivo. To explain their selectivity and potency, we performed detailed X-ray structural analysis of their interactions within the active sites of CA IX and CA II. Series of compounds bearing various aliphatic linkers between the dicarbaborane cluster and sulfonamide group were examined. Preferential binding towards the hydrophobic part of the active site cavity was observed. Selectivity towards CA IX lies in the shape complementarity of the dicarbaborane cluster with a specific CA IX hydrophobic patch containing V131 residue. The bulky side chain of F131 residue in CA II alters the shape of the catalytic cavity, disrupting favourable interactions of the spherical dicarbaborane cluster.


Asunto(s)
Antineoplásicos/química , Compuestos de Boro/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/química , Sulfonamidas/química , Secuencia de Aminoácidos , Antígenos de Neoplasias/genética , Antineoplásicos/farmacología , Anhidrasa Carbónica IX/genética , Inhibidores de Anhidrasa Carbónica/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Relación Estructura-Actividad , Sulfonamidas/farmacología
10.
Structure ; 28(12): 1288-1299.e7, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946742

RESUMEN

Dimerization of many eukaryotic transcription regulatory factors is critical for their function. Regulatory role of an epigenetic reader lens epithelium-derived growth factor/p75 (LEDGF/p75) requires at least two copies of this protein to overcome the nucleosome-induced barrier to transcription elongation. Moreover, various LEDGF/p75 binding partners are enriched for dimeric features, further underscoring the functional regulatory role of LEDGF/p75 dimerization. Here, we dissected the minimal dimerization region in the C-terminal part of LEDGF/p75 and, using paramagnetic NMR spectroscopy, identified the key molecular contacts that helped to refine the solution structure of the dimer. The LEDGF/p75 dimeric assembly is stabilized by domain swapping within the integrase binding domain and additional electrostatic "stapling" of the negatively charged α helix formed in the intrinsically disordered C-terminal region. We validated the dimerization mechanism using structure-inspired dimerization defective LEDGF/p75 variants and chemical crosslinking coupled to mass spectrometry. We also show how dimerization might affect the LEDGF/p75 interactome.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/química , Multimerización de Proteína , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Dominios Proteicos , Electricidad Estática
11.
J Fish Dis ; 43(10): 1317-1324, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32830324

RESUMEN

Since 2016, annually occurring species-specific die-offs of brown trout (Salmo trutta fario) occurred in the Thur River, situated in the Eastern part of Switzerland. These events lead to drastically reduced population densities in the impacted river regions. Clinical signs in brown trout and mortality were restricted to few weeks in August/September. To characterize the syndrome and to find possible causes, from end of March to November 2018, one-year-old brown trout (Salmo trutta fario) and rainbow trout (Oncorhynchus mykiss) were exposed to water from Thur River, fish were sampled regularly and screened for infectious agents, including viral metagenomics, and pathology was described. Starting approximately four months post-exposure, brown trout showed severe lymphohistiocytic pancarditis and necrotizing and haemorrhagic hepatitis. These lesions were recorded until the end of the experiment in November. Rainbow trout were not affected at any point in time. No infectious agents could be identified so far as cause of disease, especially no viral aetiology. Even if pathogenesis and pathology point in the direction of an infectious agent, a causative relationship could not be confirmed and aetiology remains unclear.


Asunto(s)
Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/patología , Oncorhynchus mykiss , Trucha , Animales , Enfermedades de los Peces/etiología , Secuenciación de Nucleótidos de Alto Rendimiento , Hígado/patología , Metagenómica , Miocardio/patología , Ríos , Suiza/epidemiología
12.
Chemistry ; 26(69): 16541-16553, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757220

RESUMEN

Carbonic anhydrase IX (CA IX), a tumor-associated metalloenzyme, represents a validated target for cancer therapy and diagnostics. Herein, we report the inhibition properties of isomeric families of sulfonamidopropyl-dicarba-closo-dodecaboranes group(s) prepared using a new direct five-step synthesis from the corresponding parent cages. The protocol offers a reliable solution for synthesis of singly and doubly substituted dicarba-closo-dodecaboranes with a different geometric position of carbon atoms. The closo-compounds from the ortho- and meta-series were then degraded to corresponding 11-vertex dicarba-nido-undecaborate(1-) anions. All compounds show in vitro enzymatic activity against CA IX in the low nanomolar or subnanomolar range. This is accompanied by clear isomer dependence of the inhibition constant (Ki ) and selectivity towards CA IX. Decreasing trends in Ki and selectivity index (SI ) values are observed with increasing separation of the cage carbon atoms. Interactions of compounds with the active sites of CA IX were explored with X-ray crystallography, and eight high-resolution crystal structures uncovered the structural basis of inhibition potency and selectivity.


Asunto(s)
Antígenos de Neoplasias/química , Anhidrasa Carbónica IX/química , Anhidrasa Carbónica I/química , Inhibidores de Anhidrasa Carbónica , Neoplasias , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacología , Humanos , Isoenzimas , Relación Estructura-Actividad
13.
Eur J Med Chem ; 200: 112460, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505851

RESUMEN

Carbonic anhydrase IX (CA IX) is a transmembrane enzyme overexpressed in hypoxic tumors, where it plays an important role in tumor progression. Specific CA IX inhibitors potentially could serve as anti-cancer drugs. We designed a series of sulfonamide inhibitors containing carborane clusters based on prior structural knowledge of carborane binding into the enzyme active site. Two types of carborane clusters, 12-vertex dicarba-closo-dodecaborane and 11-vertex 7,8-dicarba-nido-undecaborate (dicarbollide), were connected to a sulfonamide moiety via aliphatic linkers of varying lengths (1-4 carbon atoms; n = 1-4). In vitro testing of CA inhibitory potencies revealed that the optimal linker length for selective inhibition of CA IX was n = 3. A 1-sulfamidopropyl-1,2-dicarba-closo-dodecaborane (3) emerged as the strongest CA IX inhibitor from this series, with a Ki value of 0.5 nM and roughly 1230-fold selectivity towards CA IX over CA II. X-ray studies of 3 yielded structural insights into their binding modes within the CA IX active site. Compound 3 exhibited moderate cytotoxicity against cancer cell lines and primary cell lines in 2D cultures. Cytotoxicity towards multicellular spheroids was also observed. Moreover, 3 significantly lowered the amount of CA IX on the cell surface both in 2D cultures and spheroids and facilitated penetration of doxorubicin. Although 3 had only a moderate effect on tumor size in mice, we observed favorable ADME properties and pharmacokinetics in mice, and preferential presence in brain over serum.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Animales , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Perros , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
14.
SLAS Discov ; 25(9): 1026-1037, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32452709

RESUMEN

The DNA-linked inhibitor antibody assay (DIANA) has been recently validated for ultrasensitive enzyme detection and for quantitative evaluation of enzyme inhibitor potency. Here we present its adaptation for high-throughput screening of human carbonic anhydrase IX (CAIX), a promising drug and diagnostic target. We tested DIANA's performance by screening a unique compound collection of 2816 compounds consisting of lead-like small molecules synthesized at the Institute of Organic Chemistry and Biochemistry (IOCB) Prague ("IOCB library"). Additionally, to test the robustness of the assay and its potential for upscaling, we screened a pooled version of the IOCB library. The results from the pooled screening were in agreement with the initial nonpooled screen with no lost hits and no false positives, which shows DIANA's potential to screen more than 100,000 compounds per day.All DIANA screens showed a high signal-to-noise ratio with a Z' factor of >0.89. The DIANA screen identified 13 compounds with Ki values equal to or better than 10 µM. All retested hits were active also in an orthogonal enzymatic assay showing zero false positives. However, further biophysical validation of identified hits revealed that the inhibition activity of several hits was caused by a single highly potent CAIX inhibitor, being present as a minor impurity. This finding eventually led us to the identification of three novel CAIX inhibitors from the screen. We confirmed the validity of these compounds by elucidating their mode of binding into the CAIX active site by x-ray crystallography.


Asunto(s)
Bioensayo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento , Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/genética , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Dominio Catalítico/efectos de los fármacos , ADN/efectos de los fármacos , ADN/genética , Humanos , Simulación del Acoplamiento Molecular , Preparaciones Farmacéuticas
15.
J Med Chem ; 62(21): 9560-9575, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31568723

RESUMEN

Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.


Asunto(s)
Amidas/química , Boranos/química , Boranos/farmacología , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Anhidrasa Carbónica IX/química , Dominio Catalítico , Línea Celular Tumoral , Doxorrubicina/metabolismo , Diseño de Fármacos , Sinergismo Farmacológico , Humanos , Ratones , Modelos Moleculares , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Comput Methods Programs Biomed ; 170: 95-106, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30712607

RESUMEN

BACKGROUND AND OBJECTIVE: This paper focuses on computer simulation aspects of Digital Twin models in the medical framework. In particular, it addresses the need of fast and accurate simulators for the mechanical response at tissue and organ scale and the capability of integrating patient-specific anatomy from medical images to pinpoint the individual variations from standard anatomical models. METHODS: We propose an automated procedure to create mechanical models of the human liver with patient-specific geometry and real time capabilities. The method hinges on the use of Statistical Shape Analysis to extract the relevant anatomical features from a database of medical images and Model Order Reduction to compute an explicit parametric solution for the mechanical response as a function of such features. The Sparse Subspace Learning, coupled with a Finite Element solver, was chosen to create low-rank solutions using a non-intrusive sparse sampling of the feature space. RESULTS: In the application presented in the paper, the statistical shape model was trained on a database of 385 three dimensional liver shapes, extracted from medical images, in order to create a parametrized representation of the liver anatomy. This parametrization and an additional parameter describing the breathing motion in linear elasticity were then used as input in the reduced order model. Results show a consistent agreement with the high fidelity Finite Element models built from liver images that were excluded from the training dataset. However, we evidence in the discussion the difficulty of having compact shape parametrizations arising from the extreme variability of the shapes found in the dataset and we propose potential strategies to tackle this issue. CONCLUSIONS: A method to represent patient-specific real-time liver deformations during breathing is proposed in linear elasticity. Since the proposed method does not require any adaptation to the direct Finite Element solver used in the training phase, the procedure can be easily extended to more complex non-linear constitutive behaviors - such as hyperelasticity - and more general load cases. Therefore it can be integrated with little intrusiveness to generic simulation software including more sophisticated and realistic models.


Asunto(s)
Simulación por Computador , Imagenología Tridimensional , Hígado/diagnóstico por imagen , Modelación Específica para el Paciente , Femenino , Análisis de Elementos Finitos , Humanos , Masculino , Tomografía Computarizada por Rayos X/métodos
17.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 5): 300-306, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717998

RESUMEN

Human aldo-keto reductase 1C3 (AKR1C3) stereospecifically reduces steroids and prostaglandins and is involved in the biotransformation of xenobiotics. Its role in various cancers makes it a potential therapeutic target for the development of inhibitors. Recombinant AKR1C3 with a thrombin-cleavable N-terminal His6 tag was expressed from a pET-28(+) vector for structural studies of enzyme-inhibitor complexes. A modified in situ proteolysis approach was applied to specifically remove the His tag by thrombin cleavage during crystallization screening trials. This improved the morphology and diffraction quality of the crystals and allowed the acquisition of high-resolution diffraction data and structure solution. This approach may be generally applicable to other proteins expressed using the pET-28(+) vector.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/química , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Histidina , Trombina/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Secuencia de Aminoácidos , Cristalización/métodos , Cristalografía por Rayos X/métodos , Histidina/genética , Humanos , Proteolisis , Difracción de Rayos X/métodos
18.
Leukemia ; 32(6): 1393-1403, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29535428

RESUMEN

Activating mutations in NT5C2, a gene encoding cytosolic purine 5'-nucleotidase (cN-II), confer chemoresistance in relapsed acute lymphoblastic leukemia. Here we show that all mutants became independent of allosteric effects of ATP and thus constitutively active. Structural mapping of mutations described in patients demonstrates that 90% of leukemia-specific allelles directly affect two regulatory hotspots within the cN-II molecule-the helix A region: residues 355-365, and the intersubunit interface: helix B (232-242) and flexible interhelical loop L (400-418). Furthermore, analysis of hetero-oligomeric complexes combining wild-type (WT) and mutant subunits showed that the activation is transmitted from the mutated to the WT subunit. This intersubunit interaction forms structural basis of hyperactive NT5C2 in drug-resistant leukemia in which heterozygous NT5C2 mutation gave rise to hetero-tetramer mutant and WT proteins. This enabled us to define criteria to aid the prediction of NT5C2 drug resistance mutations in leukemia.


Asunto(s)
5'-Nucleotidasa/genética , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , 5'-Nucleotidasa/química , Resistencia a Antineoplásicos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Conformación Proteica , Subunidades de Proteína/química , Recurrencia
19.
Biomed Mater Eng ; 28(s1): S107-S111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28372285

RESUMEN

Mini-invasive surgery restricts the surgeon information to two-dimensional digital representation without the corresponding physical information obtained in previous open surgery. To overcome these drawbacks, real time augmented reality interfaces including the true mechanical behaviour of organs depending on their internal microstructure need to be developed. For the case of tumour resection, we present here a finite element numerical study of the liver mechanical behaviour including the effects of its own vascularisation through numerical indentation tests in order extract the corresponding macroscopic behaviour. The obtained numerical results show excellent correlation of the corresponding force-displacement curves when compared with macroscopic experimental data available in the literature.


Asunto(s)
Simulación por Computador , Imagenología Tridimensional/métodos , Hígado/irrigación sanguínea , Hígado/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Modelos Anatómicos , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Hígado/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA