Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(1): 101-109, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38141037

RESUMEN

Soft substrates are interesting for many applications, ranging from mimicking the cellular microenvironment to implants. Conductive electrodes on such substrates allow the realization of flexible, elastic, and transparent sensors. Single-layer graphene as a candidate for such electrodes brings the advantage that the active area of the sensor is transparent and conformal to the underlying substrate. Here, we overcome several challenges facing the routine realization of graphene cell sensors on a canonical soft substrate, namely, poly(dimethylsiloxane) (PDMS). We have systematically studied the effect of surface energy before, during, and after the transfer of graphene. Thus, we have identified a suitable support polymer, optimal substrate (pre)treatment, and an appropriate solvent for the removal of the support. Using this procedure, we can reproducibly obtain stable and intact graphene sensors on a millimeter scale on PDMS, which can withstand continuous measurements in cell culture media for several days. From local nanomechanical measurements, we infer that the softness of the substrate is slightly affected after the graphene transfer. However, we can modulate the stiffness using PDMS with differing compositions. Finally, we show that graphene sensors on PDMS can be successfully used as soft electrodes for real-time monitoring of the cell adhesion kinetics. The routine availability of single-layer graphene electrodes on a soft substrate with tunable stiffness will open a new avenue for studies, where the PDMS-liquid interface is made conducting with minimal alteration of the intrinsic material properties such as softness, flexibility, elasticity, and transparency.


Asunto(s)
Técnicas Biosensibles , Grafito , Adhesión Celular , Grafito/química , Impedancia Eléctrica , Elasticidad
2.
Small ; 20(21): e2306361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38109121

RESUMEN

Artificial van der Waals heterostructures, obtained by stacking two-dimensional (2D) materials, represent a novel platform for investigating physicochemical phenomena and applications. Here, the electrochemistry at the one-dimensional (1D) edge of a graphene sheet, sandwiched between two hexagonal boron nitride (hBN) flakes, is reported. When such an hBN/graphene/hBN heterostructure is immersed in a solution, the basal plane of graphene is encapsulated by hBN, and the graphene edge is exclusively available in the solution. This forms an electrochemical nanoelectrode, enabling the investigation of electron transfer using several redox probes, e.g., ferrocene(di)methanol, hexaammineruthenium, methylene blue, dopamine and ferrocyanide. The low capacitance of the van der Waals edge electrode facilitates cyclic voltammetry at very high scan rates (up to 1000 V s-1), allowing voltammetric detection of redox species down to micromolar concentrations with sub-second time resolution. The nanoband nature of the edge electrode allows operation in water without added electrolyte. Finally, two adjacent edge electrodes are realized in a redox-cycling format. All the above-mentioned phenomena can be investigated at the edge, demonstrating that nanoscale electrochemistry is a new application avenue for van der Waals heterostructures. Such an edge electrode will be useful for studying electron transfer mechanisms and the detection of analyte species in ultralow sample volumes.

3.
Molecules ; 28(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37241818

RESUMEN

Chiral and achiral vibrational sum-frequency generation (VSFG) spectroscopy was performed in the 1400-1700 and 2800-3800 cm-1 range to study the interfacial structure of photoactive yellow protein (PYP) adsorbed on polyethyleneimine (PEI) and poly-l-glutamic acid (PGA) surfaces. Nanometer-thick polyelectrolyte layers served as the substrate for PYP adsorption, with 6.5-pair layers providing the most homogeneous surfaces. When the topmost material was PGA, it acquired a random coil structure with a small number of ß2-fibrils. Upon adsorption on oppositely charged surfaces, PYP yielded similar achiral spectra. However, the VSFG signal intensity increased for PGA surfaces with a concomitant redshift of the chiral Cα-H and N-H stretching bands, suggesting increased adsorption for PGA compared to PEI. At low wavenumbers, both the backbone and the side chains of PYP induced drastic changes to all measured chiral and achiral VSFG spectra. Decreasing ambient humidity led to the loss of tertiary structure with a re-orientation of α-helixes, evidenced by a strongly blue-shifted chiral amide I band of the ß-sheet structure with a shoulder at 1654 cm-1. Our observations indicate that chiral VSFG spectroscopy is not only capable of determining the main type of secondary structure of PYP, i.e., ß-scaffold, but is also sensitive to tertiary protein structure.


Asunto(s)
Ácido Glutámico , Polietileneimina , Polietileneimina/química , Adsorción , Proteínas , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...