Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Environ Sci Technol ; 58(14): 6381-6390, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38547454

The objective of this study was to determine if U sediment concentrations in a U-contaminated wetland located within the Savannah River Site, South Carolina, were greater in the rhizosphere than in the nonrhizosphere. U concentrations were as much as 1100% greater in the rhizosphere than in the nonrhizosphere fractions; however and importantly, not all paired samples followed this trend. Iron (but not C, N, or S) concentrations were significantly enriched in the rhizosphere. XAS analyses showed that in both sediment fractions, U existed as UO22+ coordinated with iron(III)-oxides and organic matter. A key difference between the two sediment fractions was that a larger proportion of U was adsorbed to Fe(III)-oxides, not organic matter, in the rhizosphere, where significantly greater total Fe concentrations and greater proportions of ferrihydrite and goethite existed. Based on 16S rRNA analyses, most bacterial sequences in both paired samples were heterotrophs, and population differences were consistent with the generally more oxidizing conditions in the rhizosphere. Finally, U was very strongly bound to the whole (unfractionated) sediments, with an average desorption Kd value (Usediment/Uaqueous) of 3972 ± 1370 (mg-U/kg)/(mg-U/L). Together, these results indicate that the rhizosphere can greatly enrich U especially in wetland areas, where roots promote the formation of reactive Fe(III)-oxides.


Ferric Compounds , Uranium , Wetlands , Rhizosphere , RNA, Ribosomal, 16S , Iron , Oxides/analysis , Oxidation-Reduction , Geologic Sediments/microbiology
2.
Health Phys ; 126(3): 125-133, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38011073

ABSTRACT: Field experiments were performed to evaluate the deposition velocity of tritium oxide within a forest environment at the Savannah River Site near Aiken, SC. Field releases were designed to guide selection of deposition velocity values for use in safety-basis modeling. Six releases of deuterium oxide were conducted in 2020 and 2021 with corresponding air samples during and following each release. Samples were analyzed to determine the deuterium-to-hydrogen ratio in water and converted to concentrations of deuterium in the air during the experiment. Measurements were compared to prior model simulations to evaluate model performance and deposition velocity estimates. Field releases demonstrated vertical and horizontal mixing of a plume in a forest. Predicted deposition velocities ranged from 2.4 to 5.4 cm s -1 on average. In all cases, model simulations underpredicted deuterium concentration by 1 to 2 orders of magnitude, indicating the model does not sufficiently mix the plume into the forest. While the model underestimated the transfer of material downward through the forest, it does suggest that the model's estimates are conservative for making downwind dose estimates because of lower plume depletion, leading to higher concentration and dose estimates. While the field releases do not cover all possible meteorological conditions, we conclude it is appropriate to use a non-zero deposition velocity when performing safety-basis modeling of tritium oxide based on conservatism within the model. A recommendation of 1.0 cm s -1 as a deposition velocity is made, which is beyond the 95 th percentile value estimated from the prior modeling study.


Forests , Water , Deuterium Oxide , Deuterium , Tritium/analysis
3.
Microbiol Resour Announc ; 12(12): e0058223, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38014975

Two bacterial isolates were recovered from wetland sediments from Tims Branch, a heavy metal contaminated wetland located at the Savannah River Site. Draft genomes of the two recovered isolates, Rhodoblastus strain 17X3 and Comamonas strain 17RB, were generated from Illumina MiSeq sequencing data.

4.
ACS Omega ; 8(25): 23017-23023, 2023 Jun 27.
Article En | MEDLINE | ID: mdl-37396263

Rapid detection of nerve agents from complex matrices with minimal sample preparation is essential due to their high toxicity and bioavailability. In this work, quantum dots (QDs) were functionalized with oligonucleotide aptamers that specifically targeted a nerve agent metabolite, methylphosphonic acid (MePA). These QD-DNA bioconjugates were covalently linked to quencher molecules to form Förster resonance energy transfer (FRET) donor-acceptor pairs that quantitatively measure the presence of MePA. Using the FRET biosensor, the MePA limit of detection was 743 nM in artificial urine. A decrease in the QD lifetime was measured upon DNA binding and was recovered with MePA. The biosensor's flexible design makes it a strong candidate for the rapid detection of chemical and biological agents for deployable, in-field detectors.

5.
J Am Soc Mass Spectrom ; 32(1): 8-13, 2021 Jan 06.
Article En | MEDLINE | ID: mdl-33253565

Matrix-assisted ionization (MAI) demonstrates high sensitivity for a variety of organic compounds; however, few studies have reported the application of MAI for the detection and characterization of inorganic analytes. Trace-level uranium analysis is important in the realms of nuclear forensics, nuclear safeguards, and environmental monitoring. Traditional mass spectrometry methods employed in these fields require combinations of extensive laboratory chemistry sample preparation and destructive ionization methods. There has been recent interest in exploring ambient mass spectrometry methods that enable timely sample analysis and higher sensitivity than what is attainable by field-portable radiation detectors. Rapid characterization of uranium at nanogram levels is demonstrated in this study using MAI techniques. Mass spectra were collected on an atmospheric pressure mass spectrometer for solutions of uranyl nitrate, uranyl chloride, uranyl acetate, and uranyl oxalate utilizing 3-nibrobenzonitrile as the ionization matrix. The uranyl complexes investigated were detectable, and the chemical speciation was preserved. Sample analysis was accomplished in a matter of seconds, and limits of detection of 5 ng of uranyl nitrate, 10 ng of uranyl oxalate, 100 ng of uranyl chloride, and 200 ng of uranyl acetate were achieved. The observed gas-phase speciation was similar to negative-ion electrospray ionization of uranyl compounds with notable differences. Six matrix-derived ions were detected in all negative-ion mass spectra, and some of these ions formed adducts with the uranyl analyte. Subsequent analysis of the matrix suggests that these molecules are not matrix contaminants and are instead created during the ionization process.

6.
Sci Total Environ ; 697: 134107, 2019 Dec 20.
Article En | MEDLINE | ID: mdl-31476512

We evaluated the ability of diffusive gradients in thin films (DGT) to assess the effects of water hardness and dissolved organic carbon (DOC consisting of humic acids) on Cu and Zn toxicity (i.e., 48 h LC50s) to Ceriodaphnia dubia. When DOC was high, Cu concentrations measured by DGT (DGT Cu) were significantly lower than Cu concentrations in water (dissolved Cu), and DGT LC50s were significantly lower than LC50s based on dissolved concentrations. When DOC was low, differences between dissolved Cu and DGT Cu were small, as were differences between dissolved LC50s and DGT LC50s. Differences between DGT and dissolved measurements of Zn were small compared with the differences observed for Cu, and DGT Zn LC50s were relatively similar to dissolved Zn LC50s. Humic acids formed strong organic-Cu complexes that were both inaccessible for biological uptake and excluded by DGT, which selected for free or weakly bound Cu. In contrast, Zn did not form strong complexes with DOC that greatly affected either toxicity or the measurement of Zn by DGT. The effects of hardness on DGT measurements of Cu and Zn were smaller and more complex than the effects of DOC. Large, statistically significant differences between DGT measurements of Cu in low and high DOC water accurately reflected the strong effects of DOC on Cu toxicity. However, the effects of DOC were inconsistent for Zn, and DGT provided less information about the toxic fraction of this metal.


Cladocera/physiology , Metals/toxicity , Water Pollutants, Chemical/toxicity , Water/chemistry , Animals , Metals/chemistry , Toxicity Tests , Water Pollutants, Chemical/chemistry
7.
Environ Sci Process Impacts ; 21(6): 938-949, 2019 Jun 19.
Article En | MEDLINE | ID: mdl-31179456

The speciation of radioactive tritium (T) in a naturally-established subtropical loblolly pine forest that has been irrigated with highly-contaminated pond water for the last 20 years is reported. This irrigation project was created to limit the underground transport of a tritium-rich plume which also contains low levels of toxic organics, metals and radionuclides such as carbon-14 (14C) from a nearby low-level waste burial ground. The levels of tritiated water (HTO) in the wood cores were not influenced by recent irrigation activities. However, the tritium levels in the last 20 years of tree growth were more than 3-fold higher than that of tritium in the older growth. This was due to recent irrigation with organic-bound tritium (OBT)-rich water and subsequent accumulation of high levels tritium as OBT relative to tissue HTO. High levels of pond irrigation water OBT resulted from biogenic processes that converted HTO to OBT. Data for 14C that were acquired for some of the forest materials indicated that the processes controlling the movement and accumulation of 14C in this system are somewhat different than that of tritium. Spectroscopic characterization of tree core tissue of <20 years in age found no explanation for the unusually wide dark growth rings. It was concluded that the trees were over-irrigated based on results from other published studies with wood from severely-flooded areas. Although HTO is indeed toxic to biota, OBT represents a relatively greater hazard to biota because it can be bioaccumulated and retained for long periods of time in living tissues.


Pinus/chemistry , Radioactive Pollutants/analysis , Tritium/analysis , Wood/chemistry , Carbon Radioisotopes/analysis , Forests , Radiation Monitoring , Radioactive Pollutants/chemistry , Radioactive Waste , Tritium/chemistry , Waste Management/methods , Water
8.
Health Phys ; 117(1): 20-27, 2019 07.
Article En | MEDLINE | ID: mdl-30889103

The biotic exposure and uptake of radionuclides and potential health effects due to breccia pipe uranium mining in the Grand Canyon watershed are largely unknown. This paper describes the use of the RESRAD-BIOTA dose model to assess exposure of small rodents (n = 11) sampled at three uranium mine sites in different stages of ore production (active and postproduction). Rodent tissue and soil concentrations of naturally occurring uranium (U, U, and U), thorium (Th, Th, and Th), and radium (Ra) radioisotopes were used in the dose model. The dose assessment results indicated that the potential internal, external, and total doses to rodents were below the US Department of Energy's biota dose standard of 1 mGy d. As expected, tissue concentrations of U, U, and Th were in approximate equilibrium; however, Ra results in tissue were 1.25 to 5.75 times greater than U, U, and Th tissue results for 10 out of 11 samples. Soil at the three sites also displayed Ra enrichment, so it is likely that the Ra enrichment in the rodents was from soil via typical activities (i.e., burrowing, incidental ingestion, bathing, etc.) or by dietary uptake of translocated Ra. The results suggest that Ra is more mobile in this environment and bioaccumulates in these rodent species (e.g., in bones via the bloodstream). Internal dose accounting suggests that Ra is the radionuclide of most concern for rodent exposure and health.


Mining/methods , Radiation Monitoring/methods , Radium/analysis , Soil Pollutants, Radioactive/analysis , Thorium/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Animals , Radiation Dosage , Rodentia
9.
Sensors (Basel) ; 18(9)2018 Aug 21.
Article En | MEDLINE | ID: mdl-30134620

This study considers whether a relationship exists between response to lithium (Li) exposure and select vegetation indices (VI) determined from reflectance spectra in each of four plant species: Arabidopsis thaliana, Helianthus annuus (sunflower), Brassica napus (rape), and Zea mays (corn). Reflectance spectra were collected every week for three weeks using an ASD FieldSpec Pro spectroradiometer with both a contact probe (CP) and a field of view probe (FOV) for plants treated twice weekly in a laboratory setting with 0 mM (control) or 15 mM of lithium chloride (LiCl) solution. Plants were harvested each week after spectra collection for determination of relevant physical endpoints such as relative water content and chlorophyll content. Mixed effects analyses were conducted on selected endpoints and vegetation indices (VI) to determine the significance of the effects of treatment level and length of treatment as well as to determine which VI would be appropriate predictors of treatment-dependent endpoints. Of the species considered, A. thaliana exhibited the most significant effects and corresponding shifts in reflectance spectra. Depending on the species and endpoint, the most relevant VIs in this study were NDVI, PSND, YI, R1676/R1933, R750/R550, and R950/R750.


Arabidopsis/drug effects , Brassica napus/drug effects , Helianthus/drug effects , Lithium Chloride/pharmacology , Zea mays/drug effects , Arabidopsis/chemistry , Brassica napus/chemistry , Chlorophyll/analysis , Helianthus/chemistry , Water/analysis , Zea mays/chemistry
10.
PLoS One ; 5(10): e13287, 2010 Oct 11.
Article En | MEDLINE | ID: mdl-20949019

BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated ß-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.


Aging/physiology , Biomarkers/metabolism , Oryzias/physiology , Animals , Eye/cytology , Eye/metabolism , In Situ Nick-End Labeling , Liver/cytology , Liver/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/cytology , Myocardium/metabolism , Skin/cytology , Skin/metabolism
11.
Nucleic Acids Res ; 38(14): e144, 2010 Aug.
Article En | MEDLINE | ID: mdl-20484377

Eukaryotic cells begin to assemble discrete, nucleoplasmic repair foci within seconds after the onset of exposure to ionizing radiation. Real-time imaging of this assembly has the potential to further our understanding of the effects of medical and environmental radiation exposure. Here, we describe a microirradiation system for targeted delivery of ionizing radiation to individual cells without the need for specialized facilities. The system consists of a 25-micron diameter electroplated Nickel-63 electrode, enveloped in a glass capillary and mounted in a micromanipulator. Because of the low energy of the beta radiation and the minute total amount of isotope present on the tip, the device can be safely handled with minimum precautions. We demonstrate the use of this system for tracking assembly of individual repair foci in real time in live U2OS human osteosarcoma cells. Results indicate that there is a subset of foci that appear and disappear rapidly, before a plateau level is reached approximately 30 min post-exposure. This subset of foci would not have been evident without real-time observation. The development of a microirradiation system that is compatible with a standard biomedical laboratory expands the potential for real-time investigation of the biological effects of ionizing radiation.


DNA Breaks, Double-Stranded , Microscopy/instrumentation , Nickel , Radiation, Ionizing , Radioisotopes , Cell Line, Tumor , Electrodes , Fluorescent Dyes , Humans , Luminescent Proteins , Micromanipulation
12.
Nucleic Acids Res ; 37(20): 6746-53, 2009 Nov.
Article En | MEDLINE | ID: mdl-19759212

Mammalian cells repair DNA double-strand breaks (DSBs) via efficient pathways of direct, nonhomologous DNA end joining (NHEJ) and homologous recombination (HR). Prior work has identified a complex of two polypeptides, PSF and p54(nrb), as a stimulatory factor in a reconstituted in vitro NHEJ system. PSF also stimulates early steps of HR in vitro. PSF and p54(nrb) are RNA recognition motif-containing proteins with well-established functions in RNA processing and transport, and their apparent involvement in DSB repair was unexpected. Here we investigate the requirement for p54(nrb) in DSB repair in vivo. Cells treated with siRNA to attenuate p54(nrb) expression exhibited a delay in DSB repair in a gamma-H2AX focus assay. Stable knockdown cell lines derived by p54(nrb) miRNA transfection showed a significant increase in ionizing radiation-induced chromosomal aberrations. They also showed increased radiosensitivity in a clonogenic survival assay. Together, results indicate that p54(nrb) contributes to rapid and accurate repair of DSBs in vivo in human cells and that the PSF.p54(nrb) complex may thus be a potential target for radiosensitizer development.


DNA Breaks, Double-Stranded , DNA Repair , Nuclear Matrix-Associated Proteins/metabolism , Octamer Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , Radiation Tolerance , Cell Survival , Chromosome Aberrations , DNA-Binding Proteins , HeLa Cells , Humans , RNA, Small Interfering/metabolism
13.
Radiat Res ; 172(4): 473-80, 2009 Oct.
Article En | MEDLINE | ID: mdl-19772468

Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 0-0.5 Gy of high-energy neutron radiation or 0-15 Gy of reference gamma radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference gamma radiation, indicates an RBE of 24.9 (95% CI 13.6-40.7). A higher RBE of 48.1 (95% CI 30.0-66.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure.


Models, Animal , Neutrons/adverse effects , Oryzias , Animals , Apoptosis/radiation effects , Biomarkers/metabolism , DNA Damage/radiation effects , Dose-Response Relationship, Radiation , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/radiation effects , Endpoint Determination , Muscles/cytology , Muscles/radiation effects , Oryzias/anatomy & histology , Oryzias/embryology , Oryzias/genetics , Oryzias/metabolism , Survival Analysis , Tumor Suppressor Protein p53/metabolism
14.
Environ Toxicol Chem ; 21(10): 2198-203, 2002 Oct.
Article En | MEDLINE | ID: mdl-12371498

Depleted uranium (DU) has been used as a substitute for the fissionable enriched uranium component of atomic weapons tested at Los Alamos National Laboratory (LANL) (Los Alamos, NM, USA) since the early 1950s, resulting in considerable concentrations of DU in the soils within the test sites. Although the movement of DU into major aquatic systems has been shown to be minimal, there are many small-order ephemeral streams and areas of standing water in canyons throughout LANL that may be affected by inputs of DU via runoff, erosion, and leaching. Ninety-six-hour acute and 7-d chronic toxicity assays were conducted to measure the toxicity of DU on survival and reproduction of Ceriodaphnia dubia. A 14-d water-only assay was conducted to measure survival and growth of Hyalella azteca. The estimated median lethal concentration (LC50) to produce 50% mortality of the test population for the 96-h Ceriodaphnia dubia assay was 10.50 mg/L. Reproductive effects occurred at a lowest-observable-effect concentration > or = 3.91 mg/L with a no-observable-effect concentration of 1.97 mg/L. The estimated 14-d LC50 for the Hyalella azteca assay was 1.52 mg/L. No significant relationship was detected between growth and DU concentrations. Concentrations at which toxicity effects were observed in this study for both invertebrates exceeded concentrations of total uranium observed in runoff from LANL lands. Thus, it is likely that current runoff levels of uranium do not pose a threat to these types of aquatic invertebrates.


Crustacea/growth & development , Soil Pollutants, Radioactive/toxicity , Uranium/toxicity , Water Pollutants, Radioactive/toxicity , Animals , Crustacea/radiation effects , Lethal Dose 50 , New Mexico , Uranium/chemistry
...