Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913010

RESUMEN

We study the phase behavior of twisted convex n-prisms with n = 3 and 4, via Monte Carlo simulations. Biaxial phases, in untwisted prisms, can be induced by choosing specific geometries of the prisms. However, due to the convexity of the twisted particles, a strong twisting disables the formation of biaxial phases and stabilizes uniaxial nematic and smectic phases. Using the increased volume of the twisted convex particles, we define an effective aspect ratio of the twisted prisms and find a homogeneous phase behavior across the geometry of the prisms' cross-section and even across different shapes of the cross-section. In this representation biaxial phases are found for large aspect ratios, while the low aspect ratio behavior can be compared to the hard cylinder phase diagram. For 3-prisms with a small base angle, we show the influence of the initial configuration; a polar initial configuration results in a (polar) splay nematic phase, whereas a non-polar initial configuration results in a biaxial phase.

2.
J Phys Chem B ; 127(42): 9058-9065, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37831936

RESUMEN

We study the accuracy of the theory of Stroobants, Lekkerkerker, and Odijk [Macromolecules 1986, 19, 2232-2238], called SLO theory, to describe the thermodynamic properties of an isotropic fluid of charged rods. By incorporation of the effective diameter of the rods according to SLO theory into scaled particle theory (SPT), we obtain an expression for the rod concentration-dependent free volume fraction and the osmotic pressure of a collection of charged hard spherocylinders. The results are compared to Monte Carlo simulations. We find close agreement between the simulation results and the SLO-SPT predictions for not too large values of the Debye length and for high rod charge densities. The deviations increase with rod density, particularly at concentrations above which isotropic-nematic phase transitions are expected.

3.
Phys Chem Chem Phys ; 24(19): 11820-11827, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35508061

RESUMEN

In this paper we study excluded volume interactions, the free volume fraction available, and the phase behaviour, in mixtures of hard spheres (HS) and hard rods, modeled as spherocylinders. We use free volume theory (FVT) to predict various physical properties and compare to Monte Carlo computer simulations. FVT is used at two levels. We use the original FVT approach in which it is assumed that the correlations of the HS are not affected by the rods. This is compared to a recent, more rigorous, FVT approach which includes excluded volume interactions between the different components at all levels. We find that the novel rigorous FVT approach agrees well with computer simulation results at the level of free volume available, as well as for the phase stability. The FVT predictions show significant quantitative and qualitative deviations with respect to the original FVT approach. The phase transition curves are systematically at higher rod concentrations than previously predicted. Furthermore, the calculations revealed that a certain asphericity is required to induce isostructural fluid-fluid coexistence and the stability region is highly dependent on the size ratio between the rods and the spheres.

4.
J Chem Phys ; 156(10): 104501, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35291783

RESUMEN

We study by means of Monte Carlo simulations the internal structure of nematic droplets or tactoids formed by hard, rod-like particles in a gas of spherical ghost particles that act as depletion agents for the rods. We find that the shape and internal structure of tactoids are strongly affected by the size of the droplets. The monotonically increasing degree of nematic order with increasing particle density that characterizes the bulk nematic phase is locally violated and more so the smaller the tactoid. We also investigate the impact of an external quadrupolar alignment field on tactoids and find that this tends to make the director field more uniform, but not to very significantly increase the tactoid's aspect ratio. This agrees with recent theoretical predictions yet is at variance with experimental observations and dynamical simulations. We explain this discrepancy in terms of competing relaxation times.

5.
Soft Matter ; 18(4): 905-921, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014647

RESUMEN

We study colloidal (or smectic) membranes composed of chiral rod-like particles through Monte Carlo simulations. These objects are formed due to the presence of Asakura-Oosawa spheres acting as depletants and creating an effective attraction between the rods. The membranes' shape and structure can be influenced by several parameters, e.g. the number of spheres and rods, their length and their interaction. In order to compare simulation results to an elastic theory, we follow two ansatzes, approximating the free elastic energy in different ways. Both of them lead to reasonable results and capture the behaviour of the colloidal membrane system. One approximation, however, is not suited for achiral rods, where twisting occurs due to surface energy rather than elastic energy. We extract the inverse cholesteric pitch and twist penetration depth for chiral rods with this approximation. The other one is used to introduce a complementary method to estimate elastic constants from the shape of colloidal membranes. Besides, we describe the transition from homogeneously twisted membranes to membranes composed of substructures that occur when the chiral interaction exceeds a length-dependent threshold. We believe that our detailed study and discussion of different aspects of this model system are valuable from a fundamental research viewpoint and suitable for material design suggestions.

6.
Phys Rev E ; 100(5-1): 052140, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31869953

RESUMEN

We discuss the structure of the equation of motion that governs nucleation processes at first order phase transitions. From the underlying microscopic dynamics of a nucleating system, we derive by means of a nonequilibrium projection operator formalism the equation of motion for the size distribution of the nuclei. The equation is exact, i.e., the derivation does not contain approximations. To assess the impact of memory, we express the equation of motion in a form that allows for direct comparison to the Markovian limit. As a numerical test, we have simulated crystal nucleation from a supersaturated melt of particles interacting via a Lennard-Jones potential. The simulation data show effects of non-Markovian dynamics.

7.
Physiol Meas ; 38(5): 925-939, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28151433

RESUMEN

OBJECTIVE: Phase synchronization between two weakly coupled oscillators occurs in many natural systems. Since it is difficult to unambiguously detect such synchronization in experimental data, several methods have been proposed for this purpose. Five popular approaches are systematically optimized and compared here. APPROACH: We study and apply the automated synchrogram method, the reduced synchrogram method, two variants of a gradient method, and the Fourier mode method, analyzing 24h data records from 1455 post-infarction patients, the same data with artificial inaccuracies, and corresponding surrogate data generated by Fourier phase randomization. MAIN RESULTS: We find that the automated synchrogram method is the most robust of all studied approaches when applied to records with missing data or artifacts, whereas the gradient methods should be preferred for noisy data and low-accuracy R-peak positions. We also show that a strong circadian rhythm occurs with much more frequent phase synchronization episodes observed during night time than during day time by all five methods. SIGNIFICANCE: In specific applications, the identified characteristic differences as well as strengths and weaknesses of each method in detecting episodes of cardio-respiratory phase synchronization will be useful for selecting an appropriate method with respect to the type of systematic and dynamical noise in the data.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Electrocardiografía , Infarto del Miocardio/fisiopatología , Fenómenos Fisiológicos Respiratorios , Procesamiento de Señales Asistido por Computador , Anciano , Ritmo Circadiano , Femenino , Humanos , Masculino , Factores de Tiempo
8.
Langmuir ; 32(38): 9854-62, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27571039

RESUMEN

Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 µm to less than 1 µm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...