Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Neurobiol Dis ; 190: 106368, 2024 Jan.
Article En | MEDLINE | ID: mdl-38040383

In Huntington disease, cellular toxicity is particularly caused by toxic protein fragments generated from the mutant huntingtin (HTT) protein. By modifying the HTT protein, we aim to reduce proteolytic cleavage and ameliorate the consequences of mutant HTT without lowering total HTT levels. To that end, we use an antisense oligonucleotide (AON) that targets HTT pre-mRNA and induces partial skipping of exon 12, which contains the critical caspase-6 cleavage site. Here, we show that AON-treatment can partially restore the phenotype of YAC128 mice, a mouse model expressing the full-length human HTT gene including 128 CAG-repeats. Wild-type and YAC128 mice were treated intracerebroventricularly with AON12.1, scrambled AON or vehicle starting at 6 months of age and followed up to 12 months of age, when MRI was performed and mice were sacrificed. AON12.1 treatment induced around 40% exon skip and protein modification. The phenotype on body weight and activity, but not rotarod, was restored by AON treatment. Genes differentially expressed in YAC128 striatum changed toward wild-type levels and striatal volume was preserved upon AON12.1 treatment. However, scrambled AON also showed a restorative effect on gene expression and appeared to generally increase brain volume.


Huntington Disease , Animals , Humans , Mice , Caspase 6/genetics , Caspase 6/metabolism , Corpus Striatum/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Oligonucleotides, Antisense/pharmacology , Phenotype
2.
Methods Mol Biol ; 2434: 333-341, 2022.
Article En | MEDLINE | ID: mdl-35213029

The use of antisense oligonucleotides (AONs) is a promising therapeutic strategy for central nervous system disorders. However, the delivery of AONs to the central nervous system is challenging because their size does not allow them to diffuse over the blood-brain barrier (BBB) when injected systemically. The BBB can be bypassed by administering directly into the brain. Here we describe a method to perform single and repeated intracerebroventricular injections into the lateral ventricle of the mouse brain.


Central Nervous System Diseases , Oligonucleotides, Antisense , Animals , Blood-Brain Barrier , Brain , Central Nervous System , Injections, Intraventricular , Mice , Oligonucleotides, Antisense/genetics
3.
Mol Neurobiol ; 59(4): 2532-2551, 2022 Apr.
Article En | MEDLINE | ID: mdl-35091961

While the genetic cause of Huntington disease (HD) is known since 1993, still no cure exists. Therapeutic development would benefit from a method to monitor disease progression and treatment efficacy, ideally using blood biomarkers. Previously, HD-specific signatures were identified in human blood representing signatures in human brain, showing biomarker potential. Since drug candidates are generally first screened in rodent models, we aimed to identify HD signatures in blood and brain of YAC128 HD mice and compare these with previously identified human signatures. RNA sequencing was performed on blood withdrawn at two time points and four brain regions from YAC128 and control mice. Weighted gene co-expression network analysis was used to identify clusters of co-expressed genes (modules) associated with the HD genotype. These HD-associated modules were annotated via text-mining to determine the biological processes they represented. Subsequently, the processes from mouse blood were compared with mouse brain, showing substantial overlap, including protein modification, cell cycle, RNA splicing, nuclear transport, and vesicle-mediated transport. Moreover, the disease-associated processes shared between mouse blood and brain were highly comparable to those previously identified in human blood and brain. In addition, we identified HD blood-specific pathology, confirming previous findings for peripheral pathology in blood. Finally, we identified hub genes for HD-associated blood modules and proposed a strategy for gene selection for development of a disease progression monitoring panel.


Biological Phenomena , Huntington Disease , Animals , Brain/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Disease Progression , Huntingtin Protein/metabolism , Huntington Disease/pathology , Mice , Mice, Transgenic , Transcriptome/genetics
4.
J Inherit Metab Dis ; 44(1): 72-87, 2021 01.
Article En | MEDLINE | ID: mdl-32391605

Antisense oligonucleotide (AON) therapies involve short strands of modified nucleotides that target RNA in a sequence-specific manner, inducing targeted protein knockdown or restoration. Currently, 10 AON therapies have been approved in the United States and Europe. Nucleotides are chemically modified to protect AONs from degradation, enhance bioavailability and increase RNA affinity. Whereas single stranded AONs can efficiently be delivered systemically, delivery of double stranded AONs requires capsulation in lipid nanoparticles or binding to a conjugate as the uptake enhancing backbone is hidden in this conformation. With improved chemistry, delivery vehicles and conjugates, doses can be lowered, thereby reducing the risk and occurrence of side effects. AONs can be used to knockdown or restore levels of protein. Knockdown can be achieved by single stranded or double stranded AONs binding the RNA transcript and activating RNaseH-mediated and RISC-mediated degradation respectively. Transcript binding by AONs can also prevent translation, hence reducing protein levels. For protein restoration, single stranded AONs are used to modulate pre-mRNA splicing and either include or skip an exon to restore protein production. Intervening at a genetic level, AONs provide therapeutic options for inherited metabolic diseases as well. This review provides an overview of the different AON approaches, with a focus on AONs developed for inborn errors of metabolism.


Exons , Oligonucleotides, Antisense/pharmacology , RNA Splicing/genetics , RNA, Messenger/chemistry , Animals , Gene Knockdown Techniques , Humans , Nucleic Acid Conformation
5.
Nat Commun ; 9(1): 863, 2018 02 28.
Article En | MEDLINE | ID: mdl-29491406

CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1ß and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.


Antigens, CD/immunology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Intestines/immunology , Receptors, Fc/immunology , Cellular Reprogramming , Glycolysis , Humans , Immunoglobulin A/immunology , Interleukin-1beta/immunology , Interleukin-23/immunology , Intestines/cytology , Th17 Cells/immunology
...