Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Biomed Phys Eng Express ; 10(4)2024 Jun 18.
Article En | MEDLINE | ID: mdl-38848695

Recent advancements in computational intelligence, deep learning, and computer-aided detection have had a significant impact on the field of medical imaging. The task of image segmentation, which involves accurately interpreting and identifying the content of an image, has garnered much attention. The main objective of this task is to separate objects from the background, thereby simplifying and enhancing the significance of the image. However, existing methods for image segmentation have their limitations when applied to certain types of images. This survey paper aims to highlight the importance of image segmentation techniques by providing a thorough examination of their advantages and disadvantages. The accurate detection of cancer regions in medical images is crucial for ensuring effective treatment. In this study, we have also extensive analysis of Computer-Aided Diagnosis (CAD) systems for cancer identification, with a focus on recent research advancements. The paper critically assesses various techniques for cancer detection and compares their effectiveness. Convolutional neural networks (CNNs) have attracted particular interest due to their ability to segment and classify medical images in large datasets, thanks to their capacity for self- learning and decision-making.


Algorithms , Artificial Intelligence , Diagnostic Imaging , Image Processing, Computer-Assisted , Neoplasms , Neural Networks, Computer , Humans , Neoplasms/diagnostic imaging , Neoplasms/diagnosis , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Diagnosis, Computer-Assisted/methods , Deep Learning
2.
Talanta ; 272: 125817, 2024 May 15.
Article En | MEDLINE | ID: mdl-38402739

In recent years, the biochemical and biological research areas have shown great interest in a smart wearable sensor because of its increasing prevalence and high potential to monitor human health in a non-invasive manner by continuous screening of biomarkers dispersed throughout the biological analytes, as well as real-time diagnostic tools and time-sensitive information compared to conventional hospital-centered system. These smart wearable sensors offer an innovative option for evaluating and investigating human health by incorporating a portion of recent advances in technology and engineering that can enhance real-time point-of-care-testing capabilities. Smart wearable sensors have emerged progressively with a mixture of multiplexed biosensing, microfluidic sampling, and data acquisition systems incorporated with flexible substrate and bodily attachments for enhanced wearability, portability, and reliability. There is a good chance that smart wearable sensors will be relevant to the early detection and diagnosis of disease management and control. Therefore, pioneering smart wearable sensors into reality seems extremely promising despite possible challenges in this cutting-edge technology for a better future in the healthcare domain. This review presents critical viewpoints on recent developments in wearable sensors in the upcoming smart digital health monitoring in real-time scenarios. In addition, there have been proactive discussions in recent years on materials selection, design optimization, efficient fabrication tools, and data processing units, as well as their continuous monitoring and tracking strategy with system-level integration such as internet-of-things, cyber-physical systems, and machine learning algorithms.


Wearable Electronic Devices , Humans , Reproducibility of Results , Point-of-Care Testing , Digital Health , Technology
3.
Biotechniques ; 74(4): 158-171, 2023 04.
Article En | MEDLINE | ID: mdl-37139914

The recent cases of COVID-19 have brought the prospect of and requirement for point-of-care diagnostic devices into the limelight. Despite all the advances in point-of-care devices, there is still a huge requirement for a rapid, accurate, easy-to-use, low-cost, field-deployable and miniaturized PCR assay device to amplify and detect genetic material. This work aims to develop an Internet-of-Things automated, integrated, miniaturized and cost-effective microfluidic continuous flow-based PCR device capable of on-site detection. As a proof of application, the 594-bp GAPDH gene was successfully amplified and detected on a single system. The presented mini thermal platform with an integrated microfluidic device has the potential to be used for the detection of several infectious diseases.


COVID-19 , Humans , COVID-19/diagnosis , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Lab-On-A-Chip Devices , DNA
4.
Biosensors (Basel) ; 13(3)2023 Mar 22.
Article En | MEDLINE | ID: mdl-36979624

Even today, most biomarker testing is executed in centralized, dedicated laboratories using bulky instruments, automated analyzers, and increased analysis time and expenses. The development of miniaturized, faster, low-cost microdevices is immensely anticipated for substituting for these conventional laboratory-oriented assays and transferring diagnostic results directly onto the patient's smartphone using a cloud server. Pioneering biosensor-based approaches might make it possible to test biomarkers with reliability in a decentralized setting, but there are still a number of issues and restrictions that must be resolved before the development and use of several biosensors for the proper understanding of the measured biomarkers of numerous bioanalytes such as DNA, RNA, urine, and blood. One of the most promising processes to address some of the issues relating to the growing demand for susceptible, quick, and affordable analysis techniques in medical diagnostics is the creation of biosensors. This article critically discusses a short review of biosensors used for detecting nucleic acid biomarkers, and their use in biomedical prognostics will be addressed while considering several essential characteristics.


Biosensing Techniques , Nucleic Acids , Humans , Biomarkers/analysis , Biosensing Techniques/methods , DNA , Reproducibility of Results
5.
Biosensors (Basel) ; 13(2)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36832012

Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.


Biosensing Techniques , Microfluidics , Humans , Electrochemical Techniques/methods , Bacteria , Point-of-Care Testing , Biosensing Techniques/methods
6.
Biosensors (Basel) ; 12(10)2022 Oct 18.
Article En | MEDLINE | ID: mdl-36291028

In recent years, there has been immense advancement in the development of nanobiosensors as these are a fundamental need of the hour that act as a potential candidate integrated with point-of-care-testing for several applications, such as healthcare, the environment, energy harvesting, electronics, and the food industry. Nanomaterials have an important part in efficiently sensing bioreceptors such as cells, enzymes, and antibodies to develop biosensors with high selectivity, peculiarity, and sensibility. It is virtually impossible in science and technology to perform any application without nanomaterials. Nanomaterials are distinguished from fine particles used for numerous applications as a result of being unique in properties such as electrical, thermal, chemical, optical, mechanical, and physical. The combination of nanostructured materials and biosensors is generally known as nanobiosensor technology. These miniaturized nanobiosensors are revolutionizing the healthcare domain for sensing, monitoring, and diagnosing pathogens, viruses, and bacteria. However, the conventional approach is time-consuming, expensive, laborious, and requires sophisticated instruments with skilled operators. Further, automating and integrating is quite a challenging process. Thus, there is a considerable demand for the development of nanobiosensors that can be used along with the POCT module for testing real samples. Additionally, with the advent of nano/biotechnology and the impact on designing portable ultrasensitive devices, it can be stated that it is probably one of the most capable ways of overcoming the aforementioned problems concerning the cumulative requirement for the development of a rapid, economical, and highly sensible device for analyzing applications within biomedical diagnostics, energy harvesting, the environment, food and water, agriculture, and the pharmaceutical industry.


Biosensing Techniques , Nanostructures , Nanostructures/chemistry , Water
7.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Article En | MEDLINE | ID: mdl-35884346

Biosensors are ubiquitous in a variety of disciplines, such as biochemical, electrochemical, agricultural, and biomedical areas. They can integrate various point-of-care applications, such as in the food, healthcare, environmental monitoring, water quality, forensics, drug development, and biological domains. Multiple strategies have been employed to develop and fabricate miniaturized biosensors, including design, optimization, characterization, and testing. In view of their interactions with high-affinity biomolecules, they find application in the sensitive detection of analytes, even in small sample volumes. Among the many developed techniques, microfluidics have been widely explored; these use fluid mechanics to operate miniaturized biosensors. The currently used commercial devices are bulky, slow in operation, expensive, and require human intervention; thus, it is difficult to automate, integrate, and miniaturize the existing conventional devices for multi-faceted applications. Microfluidic biosensors have the advantages of mobility, operational transparency, controllability, and stability with a small reaction volume for sensing. This review addresses biosensor technologies, including the design, classification, advances, and challenges in microfluidic-based biosensors. The value chain for developing miniaturized microfluidic-based biosensor devices is critically discussed, including fabrication and other associated protocols for application in various point-of-care testing applications.


Biosensing Techniques , Microfluidics , Biosensing Techniques/methods , Humans , Lab-On-A-Chip Devices , Microfluidics/methods , Point-of-Care Systems , Point-of-Care Testing
8.
IEEE Trans Nanobioscience ; 21(1): 97-104, 2022 01.
Article En | MEDLINE | ID: mdl-34170829

Herein, a continuous-flow driven microfluidic device has been designed and fabricated using the CO2 laser ablation method for polymerase chain reaction (PCR). The device consists of a polymethyl methacrylate (PMMA) microfluidic channel with 30 serpentine thermal cycles, an arduino board, two custom-made cartridge heaters, and thermocouple sensors. The portable thermal management system, with aluminium blocks placed on a wooden substrate, working on the PID controller principle, is low-cost, battery-powered, automated, integrated, and IoT-enabled. The device with dimensions 80×72×36 mm3 (L × W × H) has a temperature accuracy of ±0.2 °C. The IoT module enables accessing and storage of real-time temperature values directly onto the smartphone through ThingSpeak analytics. It was developed to achieve desirable accurate temperature at two thermal zones, denaturation and annealing (95 °C and 60 °C) on the microfluidic thermal management platform. A PCR mixture of [Formula: see text] was infused into the serpentine-based microchannel using a syringe pump. Amplification of DNA template with 594-base pair (bp) fragment of the rat GAPDH gene was successfully performed on the miniaturized thermal management system. The total time required for a complete PCR reaction was 32 min at an optimum flow rate of [Formula: see text]/min. The amplified sample of the target DNA obtained from the PCR microchannel was then separated by agarose gel electrophoresis and was further analyzed using a gel-doc system. Finally, the obtained results were compared to the conventional PCR instrument showing excellent performance.


Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Animals , DNA/genetics , Microfluidics , Polymerase Chain Reaction , Rats
9.
Luminescence ; 37(2): 357-365, 2022 Feb.
Article En | MEDLINE | ID: mdl-34931738

There is a growing demand to realize low-cost miniaturized point-of-care testing diagnostic devices capable of performing many analytical assays. To fabricate such devices, three-dimensional printing (3DP)-based fabrication techniques provide a turnkey approach with marked precision and accuracy. Here, a 3DP fabrication technique was successfully utilized to fabricate closed bipolar electrode-based electrochemiluminescence (ECL) devices using conductive graphene filament. Furthermore, using these ECL devices, Ru(bpy)3 2+ /TPrA- and luminol/H2 O2 -based electrochemistry was leveraged to sense dopamine and choline respectively. For ECL signal capture, two distinct approaches were used, first a smartphone-based miniaturized platform and the second with a photomultiplier tube embedded with the internet of things technology. Choline sensing led to a linear range 5-700 µM and 30-700 µM with a limit of detection (LOD) of 1.25 µM (R2 = 0.98, N = 3) and 3.27 µM (R2 = 0.97, N = 3). Furthermore, dopamine sensing was achieved in a linear range 0.5-100 µM with an LOD = 2 µM (R2 = 0.99, N = 3) and LOD = 0.33 µM (R2 = 0.98, N = 3). Overall, the fabricated devices have the potential to be utilized effectively in real-time applications such as point-of-care testing.


Biosensing Techniques , Internet of Things , Choline , Dopamine , Electrochemical Techniques , Electrodes , Luminescent Measurements , Printing, Three-Dimensional , Smartphone
10.
Colloids Surf B Biointerfaces ; 208: 112056, 2021 Dec.
Article En | MEDLINE | ID: mdl-34425529

Picric acid (PA) is one of the essential components utilized in manufacturing of explosives. Therefore, the detection of trace amount of PA is critical in forensic science, criminal investigation, military security and environmental safety. Owing to these attributes, development of a simple, rapid and point-of-care (POC) analytical method for PA detection and quantification is crucial. Herein, a low-cost, POC, ink jetted paper device has been developed for electroanalytical detection of PA. Inkjet printing is an economic fabrication process used for extruding several nanomaterials with diversified applications. By improving the ink viscosity, inkjet printers can simplify the fabrication of paper-based electrochemical sensor, and provide easy, fast, environmental friendly and viable for large scale production sensors, thereby adding its commercialization potential. In this work, a commercially available circuit board printer and an inexpensive high viscosity carbon conductive ink were used to print an electrochemical paper device. The fabricated device was used for electrochemical detection of PA using cyclic voltammetry (CV) and wave voltammetry (SWV). Various parameters like effect of potential scan rate from 10 mVs-1 to 300 mVs-1, effect of variable PA concentration effect was studied. A linear concentration range of 4 µM to 60 µM was obtained. For a working electrode of 7 mm2 surface area, the limit of detection (LOD) was 4.04 µM (922.56 ppb) which was less than the prescribed safe limit of 8 µM. Effect of interference with other chemicals was examined using SWV with the co-existing metals like zinc, lead, copper and mercury. Finally, real sample analysis for tap and lake water was successfully performed with the device. The developed cost-effective paper-based ink-jetted platform, with further fine-tuning and surface modifications, can be used for sensing various analytes as a point-of-care device.


Ink , Electrodes , Limit of Detection , Picrates
11.
Biomed Microdevices ; 23(2): 31, 2021 06 06.
Article En | MEDLINE | ID: mdl-34091727

Undoubtedly, various kinds of nanomaterials are of great significance due to their enormous applications in diverse areas. The structure and productivity of nanomaterials are heavily dependent on the process used for their synthesis. The synthesizing process plays a vital role in shaping nanomaterials effectively for better productivity. The conventional method requires expensive and massive thermal instruments, a huge volume of reagents. This paper aims to develop an Automatic Miniaturized Temperature Controller (AMTC) device for the synthesis of nickel oxide (NiO), copper oxide (CuO) nanoparticles, and nanomicelles. The device features a low-cost, miniaturized, easy-to-operate with plug-and-play power source, precise temperature control, and geotagged real-time data logging facility for the producing nanoparticles. With a temperature accuracy of ± 2 °C, NiO and CuO nanoparticles, and nanomicelles are synthesized on AMTC device, and are subjected to different characterizations to analyze their morphological structure. The obtained mean size of NiO and CuO is 27.14 nm and 85.13 nm respectively. As a proof-of-principle, the synthesized NiO and CuO nanomaterials are validated for electrochemical sensing of dopamine, hydrazine, and uric acid. Furthermore, the study is conducted, wherein, Dexamethasone (Dex) loaded nanomicelles are developed using AMTC device and compared to the conventional thin-film hydration method. Subsequently, as a proof-of-application, the developed nanomicelles are evaluated for transcorneal penetration using exvivo goat cornea model. Ultimately, the proposed device can be utilized for performing a variety of controlled thermal reactions on a minuscule platform with an integrated and miniaturized approach for various applications.


Nanoparticles , Pharmaceutical Preparations , Copper , Smartphone , Temperature
12.
Nanotechnology ; 31(42): 425504, 2020 Aug 04.
Article En | MEDLINE | ID: mdl-32748804

Evidently, microfluidic devices are proven to be one of the most effective and powerful tools for manipulating, preparing, functionalizing and producing new generation nanoparticles and nanocomposites. Their benefits include low solution/sample feeding, excellent handling of reagents, exceptional control of size and composition, compactness, easy to process with rapid thermal management and cost-effectiveness. Such advantages have led to the endorsement of nano-microscale fabrication methods to develop highly controllable and reproducible minuscule devices. This work aims to design and develop a microscale-based temperature control device with added features like low-cost, portability, miniaturized, easy-to-use, minuscule reaction volume and point-of-source system for the synthesis of nanoparticles. The device incorporates many features such as real-time data access with a GUI interface with a smartphone open-source app for Bluetooth and Database cloud for an Internet of Things module. The portable thermal device is then calibrated and is capable of achieving a maximum temperature of 250 °C in 25 min. The fabricated device is harnessed for the synthesis of manganese oxide (MnO2) nanoparticles. The synthesized nanoparticles were subjected to various characterization techniques like SEM and XPS to analyze the surface morphology. To test the applicability, as a proof of concept, the synthesized nanoparticles were tested for electrochemical sensing of hydrogen peroxide and dopamine. Overall, the portable device can be utilized for carrying out diverse temperature-controlled reactions in a microfluidic system in a user-friendly and automated manner.

...