Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Adv Mater ; : e2403875, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051946

RESUMEN

CsPbBr3 exhibits outstanding optoelectronic properties and thermal stability, making it a coveted material for detectors, light-emitting diodes, and solar cells. Despite observations of ferroelectricity in CsPbBr3 quantum dots, synthesizing bulk ferroelectric CsPbBr3 crystals has remained elusive, hindering its potential in next-generation optoelectronic devices like optical switches and ferroelectric photovoltaics. Here, a breakthrough is reported: a novel solvothermal technique enabling the growth of ferroelectric CsPbBr3 nanoplatelets with lateral dimensions in the tens of micrometers. This represents a significant step toward achieving large-area ferroelectric CsPbBr3 crystals. Unlike traditional methods, this approach allows for growth and crystallization of CsPbBr3 in alcohol solutions by enhancing precursor solubility. This study confirms the ferroelectric nature of these nanoplatelets using second harmonic generation, electrical characterizations, and piezoresponse force microscopy. This work paves the way for utilizing ferroelectric CsPbBr3 in novel optoelectronic devices, significantly expanding the potential of this material and opening doors for further exploration in this exciting field.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38843420

RESUMEN

Background: Camphora officinarum (CO) is a commonly used homeopathic remedy for treating colds, collapse, and recurrent eruptive illnesses. Objective: Due to the non-availability of safety data on CO, the current study intended to determine the oral toxicity of CO in its ethanol-potentized dilutions 6C, 30C, and 200C in Wistar albino rats as per OECD guidelines. Materials and methods: A single oral dose of CO-6C, 30C, and 200C (2000 µl/kg) was administered, and the animals were monitored for behavior and mortality for up to 14 days in an acute toxicity study. In the subacute study, the effects of daily oral administration of CO-6C, 30C, and 200C (200 µl/kg) for 28 days were observed for clinical signs, change in body weight, and mortality. Hematological, biochemical, and histopathological analyses were assessed and organ weights were determined. Results: Results indicate no mortality of CO in its potencies in the acute toxicity study and was found to be safe at 2000 µl/kg dosage in the subacute toxicity study. CO (200 µl/kg/day) did not show any signs of toxicity in the hematological, biochemical, and histopathological analyses, along with organ weights. Conclusion: In conclusion, the findings suggest that CO in potencies of 6C, 30C, and 200C is safe up to a single oral dose of 2000 µl/kg body weight, and the No Observed Adverse Effect Level (NOAEL) was determined to be greater than 200 µl/kg/day.

3.
Sci Rep ; 14(1): 13721, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877078

RESUMEN

The beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), has become a significant pest of chickpea in recent years. The polyphagous nature allows it to survive on various hosts during the off-season, creating a great menace to the crop in the following season. To assess the incidence and document the alternate hosts of S. exigua, a rapid roving survey was conducted in 11 chickpea-growing areas of Prakasam district, Andhra Pradesh, India. Additionally, the life history traits of S. exigua were studied on major alternate host plants under laboratory conditions (27 ± 1 °C and 70 ± 2% RH) to understand the survival, life expectancy and potential contribution to future populations. The results show that, among the different crops surveyed, the maximum larval incidence was noticed in maize (1.93 larvae/plant), cowpea (1.73 larvae/plant), and sunflower (1.68 larvae/plant) during the off-season. Life history studies of S. exigua showed that highest larval survival percentage was observed on chickpea (83.6%), while the lowest was on maize (44.5%). The mean developmental time for larvae was longest on maize (27.1 days) and shortest on chickpea (14.9 days). Larvae did not develop beyond the third instar when fed with chilli. The growth index statistics showed chickpea (9.2) was the most suitable host plant, whereas maize (0.9) was the least suitable host. The age-stage-specific survival rate (Sxj) varied across developmental stages, and the survival curves overlapped, indicating different growth rates among individuals. The life expectancy (exj) at age zero was highest on groundnut (37.06 days). The intrinsic rate of increase (r) of S. exigua was lowest on maize (0.10 ± 0.0013) and highest on chickpea (0.22 ± 0.0010). Similarly, the net reproductive rate (R0) was highest on chickpea (846.39 ± 18.22) and lowest on maize (59.50 ± 2.06). The population doubled every 3.08 ± 0.011 days on chickpea compared to 7.22 ± 0.80 days on maize. The study conclusively indicates that chickpea and sunflower, primarily cultivated during the rabi season in India, are the most preferred hosts for S. exigua. In contrast, maize and cotton, mainly grown during the kharif season, are less preferred and merely support the pest's survival. Consequently, S. exigua switches hosts between different crops growing seasons, so effective management of S. exigua during the kharif season can help prevent pest outbreaks during the rabi season.


Asunto(s)
Cicer , Larva , Estaciones del Año , Spodoptera , Animales , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Larva/crecimiento & desarrollo , Cicer/parasitología , Productos Agrícolas/parasitología , India , Zea mays/parasitología , Vigna/parasitología , Vigna/crecimiento & desarrollo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38192149

RESUMEN

BACKGROUND: In complementary and alternative medicinal systems, the Arsenicum album in ultra-high dilution was used in various therapeutic conditions, considering its effects on the body's immune system, including the COVID-19 pandemic. However, scientific evidence regarding its immunomodulatory effects is insufficient. OBJECTIVE: The current study aimed to investigate the immunomodulatory effects of Arsenicum album in an experimental mouse model. MATERIALS AND METHODS: Immunomodulatory activity of potentized dilutions of Arsenicum album i.e., 6C, 30C, 200C in BALB/c mice was evaluated by humoral antibody titer and delayed- type hypersensitivity assays wherein a fixed concentration (0.5 ml of 1× 109 cells/ml) of freshly prepared sheep RBC was administered as a foreign antigen to generate primary and secondary antibodies. RESULTS: Arsenicum album showed significant immunomodulatory activity by increasing primary antibody titer evaluated on day 21 of the treatment in all the dilutions as compared to SRBC and vehicle control group in humoral immune response assay without showing any effect on delayed-type hypersensitivity. CONCLUSION: The results of this preliminary study indicate that oral administration of Arsenicum album has the potential to augment primary humoral response at all dilutions. Hence, the possibility of using the Arsenicum album could be explored to treat immunological conditions, infections, etc., as an alternative therapy alongwith modern medicines.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38164118

RESUMEN

This article aims to improve and diversify signal processing techniques to execute a brain-computer interface (BCI) based on neurological phenomena observed when performing motor tasks using motor imagery (MI). The noise present in the original data, such as intermodulation noise, crosstalk, and other unwanted noise, is removed by Modify Least Mean Square (M-LMS) in the pre-processing stage. Traditional LMSs were unable to extract all the noise from the images. After pre-processing, the required features, such as statistical features, entropy features, etc., were extracted using Common Spatial Pattern (CSP) and Pearson's Correlation Coefficient (PCC) instead of the traditional single feature extraction model. The arithmetic optimization algorithm cannot select the features accurately and fails to reduce the feature dimensionality of the data. Thus, an Extended Arithmetic operation optimization (ExAo) algorithm is used to select the most significant attributes from the extracted features. The proposed model uses Double Attention Convolutional Neural Networks (DAttnConvNet) to classify the types of EEG signals based on optimal feature selection. Here, the attention mechanism is used to select and optimize the features to improve the classification accuracy and efficiency of the model. In EEG motor imagery datasets, the proposed model has been analyzed under class, which obtained an accuracy of 99.98% in class Baseline (B), 99.82% in class Imagined movement of a right fist (R) and 99.61% in class Imagined movement of both fists (RL). In the EEG dataset, the proposed model can obtain a high accuracy of 97.94% compared to EEG datasets of other models.

6.
Nanotechnology ; 34(50)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708882

RESUMEN

The reduced dielectric screening in atomically thin two-dimensional materials makes them very sensitive to the surrounding environment, which can be modulated to tune their optoelectronic properties. In this study, we significantly improved the optoelectronic properties of monolayer MoS2by varying the surrounding environment using different liquid dielectrics, each with a specific dielectric constant ranging from 1.89 to 18. Liquid mediums offer the possibility of environment tunability on the same device. For a back-gated field effect transistor, the field effect mobility exhibited more than two-order enhancement when exposed to a high dielectric constant medium. Further investigation into the effect of the dielectric environment on the optoelectronic properties demonstrated a variation in photoresponse relaxation time with the dielectric medium. The rise and decay times were observed to increase and decrease, respectively, with an increase in the dielectric constant of the medium. These results can be attributed to the dielectric screening provided by the surrounding medium, which strongly modifies the charged impurity scattering, the band gap, and defect levels of monolayer MoS2. These findings have important implications for the design of biological and chemical sensors, particularly those operating in a liquid environment. By leveraging the tunability of the dielectric medium, we can optimize the performance of such sensors and enhance their detection capabilities.

7.
Opt Lett ; 48(11): 2937-2940, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262248

RESUMEN

Deterministic optical manipulation of fluorescent nanodiamonds (FNDs) in fluids has emerged as an experimental challenge in multimodal biological imaging. Designing and developing nano-optical trapping strategies to serve this purpose is an important task. In this Letter, we show how chemically prepared gold nanoparticles and silver nanowires can facilitate an opto-thermoelectric force to trap individual entities of FNDs using a long working distance lens, low power-density illumination (532-nm laser, 12 µW/µm2). Our trapping configuration combines the thermoplasmonic fields generated by individual plasmonic nanoparticles and the opto-thermoelectric effect facilitated by the surfactant to realize a nano-optical trap down to a single FND that is 120 nm in diameter. We use the same trapping excitation source to capture the spectral signatures of single FNDs and track their position. By tracking the FND, we observe the differences in the dynamics of the FND around different plasmonic structures. We envisage that our drop-casting platform can be extrapolated to perform targeted, low-power trapping, manipulation, and multimodal imaging of FNDs inside biological systems such as cells.

8.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-37205600

RESUMEN

While circadian rhythms are entrained to the once daily light-dark cycle of the sun, many marine organisms exhibit ~12h ultradian rhythms corresponding to the twice daily movement of the tides. Although human ancestors emerged from circatidal environment millions of years ago, direct evidence of ~12h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells and identified robust ~12h transcriptional rhythms from three healthy participants. Pathway analysis implicated ~12h rhythms in RNA and protein metabolism, with strong homology to the circatidal gene programs previously identified in Cnidarian marine species. We further observed ~12h rhythms of intron retention events of genes involved in MHC class I antigen presentation, synchronized to expression of mRNA splicing genes in all three participants. Gene regulatory network inference revealed XBP1, and GABP and KLF transcription factor family members as potential transcriptional regulators of human ~12h rhythms. These results suggest that human ~12h biological rhythms have a primordial evolutionary origin with important implications for human health and disease.

9.
Heliyon ; 9(4): e15093, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37095998

RESUMEN

The detection of water deficit conditions in different soils of Prakasam district, Andhra Pradesh, India was assessed in consecutive two seasons of 2017-18 to 2019-20 cropping seasons using combined indicators developed from Standard Precipitation Index (SPI) and Normalized Difference Vegetation Index (NDVI). Historical rainfall data during the study period of 56 administrative units were analyzed by using R software and derived three-month SPI. The MODIS satellite data from 2007 to 2020 was downloaded out of which the first ten years' data was used as mean monthly NDVI and the remaining period data was used to derive the anomaly index for the specific month. MODIS satellite data was downloaded, using LST and NDVI, and MSI values were calculated. The NDVI anomaly was derived using MODIS data to study the onset and intensity of water deficit conditions. Results indicated that SPI values gradually increased from the start of the Kharif season, reached their maximum during the August and September months, and decreased gradually with high variation among the mandals. The NDVI anomaly values were highest in October and December the for Kharif and Rabi seasons, respectively. The correlation coefficient between NDVI anomaly and SPI reveals that 79% and 61% of the variation were observed in light and heavy textured soils. The SPI values of -0.5 and -0.75; the NDVI anomaly values of -1.0 and -1.5 and SMI values of 0.28 and 0.26 were established as the thresholds for the onset of water deficit conditions in light and heavy textured soils, respectively. Overall, results suggest that the combined use of SMI, SPI, and NDVI anomaly is capable to provide a near-real-time indicator for water deficit conditions in light and heavy texture soils. Yield reduction was higher in light-textured soils ranging from 6.1 to 34.5%. These results can further be used in devising tactics for the effective mitigation of drought.

10.
Multimed Tools Appl ; : 1-42, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36712955

RESUMEN

Recently, the Covid-19 pandemic has affected several lives of people globally, and there is a need for a massive number of screening tests to diagnose the existence of coronavirus. For the medical specialist, detecting COVID-19 cases is a difficult task. There is a need for fast, cheap and accurate diagnostic tools. The chest X-ray and the computerized tomography (CT) play a significant role in the COVID-19 diagnosis. The advancement of deep learning (DL) approaches helps to introduce a COVID diagnosis system to achieve maximum detection rate with minimum time complexity. This research proposed a discrete wavelet optimized network model for COVID-19 diagnosis and feature extraction to overcome these problems. It consists of three stages pre-processing, feature extraction and classification. The raw images are filtered in the pre-processing phase to eliminate unnecessary noises and improve the image quality using the MMG hybrid filtering technique. The next phase is feature extraction, in this stage, the features are extracted, and the dimensionality of the features is diminished with the aid of a modified discrete wavelet based Mobile Net model. The third stage is the classification here, the convolutional Aquila COVID detection network model is developed to classify normal and COVID-19 positive cases from the collected images of the COVID-CT and chest X-ray dataset. Finally, the performance of the proposed model is compared with some of the existing models in terms of accuracy, specificity, sensitivity, precision, f-score, negative predictive value (NPV) and positive predictive value (PPV), respectively. The proposed model achieves the performance of 99%, 100%, 98.5%, and 99.5% for the CT dataset, and the accomplished accuracy, specificity, sensitivity, and precision values of the proposed model for the X-ray dataset are 98%, 99%, 98% and 97% respectively. In addition, the statistical and cross validation analysis is conducted to validate the effectiveness of the proposed model.

11.
Appl Radiat Isot ; 187: 110336, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35764004

RESUMEN

Coal fly ash (CFA) is an important secondary source for the recovery of gallium (Ga) which has a high potential for its wide applications in many strategic fields such as cellular communications and direct broadcast satellite. Various coal fly and bottom ash samples obtained from thermal power plants located in different parts of India were investigated for their gallium content using NAA and EDXRF techniques. The concentration of gallium in NIST SRM 1633b CFA is not available in NIST certificate and hence was established using k0 based IM-NAA method along with the other certified elements like As, Ce, Co, Eu, Fe, K etc. In addition, the gallium concentration in the NIST SRM was also obtained by relative NAA using Ga2O3 as a standard towards the validation of IM-NAA. Using the NIST SRM, the gallium content in the ash samples of Bituminous coal collected from South Central and Eastern India was found to be from 17.2 to 47.9 mg/kg whereas the same was 6.3-33.3 mg/kg for the ash samples of Lignite coal collected from the South-Central India and Western India. The gallium concentrations obtained by NAA in coal ash samples were compared with another non-destructive assay technique, i.e. EDXRF and the results are found to be in good agreement. These samples were proved to be a potential secondary source of gallium, available in India.


Asunto(s)
Ceniza del Carbón , Galio , Carbón Mineral/análisis , Ceniza del Carbón/análisis , Galio/análisis , India , Centrales Eléctricas
12.
Appl Radiat Isot ; 184: 110194, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35316780

RESUMEN

The in-situ relative detection efficiency strongly influences the characteristics of the k0-based internal monostandard neutron activation analysis (IM-NAA). In the present work, various mathematical functions were explored for the establishment of in-situ relative detector efficiency calibration and compared their performance based on the reduced chi-square (χ2) values. Among the various mathematical functions, the polynomial logarithm with 6th order was found to be associated with the minimum mean standard deviation for the experimental data and the lowest value of reduced χ2 after carrying out multiple iterations using Nelder-Mead algorithm. Quality assurance of the function was tested by carrying out elemental quantification of the NIST SRM 1633b coal fly ash. Gamma energies of the activation products, 152mEu, 59Fe, 140La, 24Na and 46Sc of the irradiated NIST standard were used for the in-situ relative full energy peak efficiency calibration of 30% HPGe detector. The sample was counted for different time intervals for the complete profiling of the elements present in the NIST SRM. The deviations for most of the elements were found to be within ±5% with respect to the certified values and ξ-score values were within ±2, demonstrating its better accuracy. This method was also applied satisfactorily to profile the elemental concentrations of alloy materials used in a thermal sensor guide tube of the steam generator in a test reactor.


Asunto(s)
Análisis de Activación de Neutrones , Calibración , Rayos gamma , Análisis de Activación de Neutrones/métodos
13.
Diabetes ; 71(3): 412-423, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040481

RESUMEN

Adipose tissue (AT) expands by a combination of two fundamental cellular mechanisms: hypertrophic growth of existing adipocytes or through generation of new adipocytes, also known as hyperplastic growth. Multiple lines of evidence suggest a limited capacity for hyperplastic growth of AT in adulthood and that adipocyte number is relatively stable, even with fluctuations in AT mass. If the adipocyte number is stable in adulthood, despite well-documented birth and death of adipocytes, then this would suggest that birth may be coupled to death in a regenerative cycle. To test this hypothesis, we examined the dynamics of birth of new fat cells in relationship to adipocyte death by using high-fidelity stable isotope tracer methods in C57Bl6 mice. We discovered birth of new adipocytes at higher frequency in histological proximity to dead adipocytes. In diet-induced obesity, adipogenesis surged after an adipocyte death peak beyond 8 weeks of high-fat feeding. Through transcriptional analyses of AT and fractionated adipocytes, we found that the dominant cell death signals were inflammasome related. Proinflammatory signals were particularly evident in hypertrophied adipocytes or with deletion of a constitutive oxygen sensor and inhibitor of hypoxia-inducible factor, Egln1. We leveraged the potential role for the inflammasome in adipocyte death to test the adipocyte death-birth hypothesis, finding that caspase 1 loss of function attenuated adipocyte death and birth in murine visceral AT. These data collectively point to a regenerative cycle of adipocyte death and birth as a driver of adipogenesis in adult murine AT.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/fisiología , Muerte Celular , Inflamación/fisiopatología , Grasa Intraabdominal/fisiopatología , Obesidad/fisiopatología , Células 3T3-L1 , Animales , Caspasa 1/genética , Caspasa 1/fisiología , Dieta Alta en Grasa , Hipertrofia , Inflamasomas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/etiología
14.
J Phys Chem Lett ; 12(49): 11910-11918, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34878793

RESUMEN

Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single-molecule spectroscopic signatures. Facilitating this capability in optically trapped nanoparticles at low laser power remains a significant challenge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ the bianalyte SERS technique to ascertain the single molecule statistical signatures and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power (≈ 0.1 mW/µm2) tweezer platform to trap a single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments and to be potentially adapted as an in vivo plasmonic tweezer.

15.
Soft Matter ; 17(48): 10903-10909, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34807220

RESUMEN

Optical excitation of colloids can be harnessed to realize soft matter systems that are out of equilibrium. In this paper, we present our experimental studies on the dynamics of silica colloids in the vicinity of a silver nanowire propagating surface plasmon polaritons (SPPs). Due to the optothermal interaction, the colloids are directionally pulled towards the excitation point of the nanowire. Having reached this point, they are spatio-temporally trapped around the excitation location. By increasing the concentration of colloids in the system, we observe multi-particle assembly around the nanowire. This process is thermophoretically driven and assisted by the SPPs. Furthermore, we find such an assembly to be sensitive to the excitation polarization at the input of the nanowire. Numerically-simulated temperature distribution around an illuminated nanowire corroborates sensitivity to the excitation polarization. Our study will find relevance in exploration of SPP-assisted optothermal pulling, trapping and assembly of colloids, and can serve as a test-bed of plasmon-driven active matter.

16.
J Phys Chem Lett ; 12(28): 6589-6595, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34242502

RESUMEN

We report on the experimental observation of beaming elastic and surface enhanced Raman scattering (SERS) emission from a bent-nanowire on a mirror (B-NWoM) cavity. The system was probed with polarization resolved Fourier plane and energy-momentum imaging to study the spectral and angular signature of the emission wavevectors. The out-coupled elastically scattered light from the kink occupies a narrow angular spread. We used a self-assembled monolayer of molecules with a well-defined molecular orientation to utilize the out-of-plane electric field in the cavity for enhancing Raman emission from the molecules and in achieving beaming SERS emission. Calculated directionality for elastic scattering and SERS emission was found to be 16.2 and 12.5 dB, respectively. The experimental data were corroborated with three-dimensional numerical finite element and finite difference time domain based numerical simulations. The results presented here may find relevance in understanding coupling of emitters with elongated plasmonic cavities and in designing on-chip optical antennas.

17.
Opt Express ; 29(10): 15366-15381, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985237

RESUMEN

We show that plasmonic nanowire-nanoparticle systems can perform nonlinear wavelength and modal conversions and potentially serve as building blocks for signal multiplexing and novel trafficking modalities. When a surface plasmon excited by a pulsed laser beam propagates in a nanowire, it generates a localized broadband nonlinear continuum at the nanowire surface as well as at active locations defined by sites where nanoparticles are absorbed (enhancement sites). The local response may couple to new sets of propagating modes enabling a complex routing of optical signals through modal and spectral conversions. Different aspects influencing the optical signal conversions are presented, including the parameters defining the local formation of the continuum and the subsequent modal routing in the nanowire.

18.
J Phys Condens Matter ; 33(1): 015701, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33034303

RESUMEN

Chiral interfaces provide a new platform to execute quantum control of light-matter interactions. One phenomenon which has emerged from engineering such nanophotonic interfaces is spin-momentum locking akin to similar reports in electronic topological materials and phases. While there are reports of spin-momentum locking with combination of chiral emitters and/or chiral metamaterials with directional far field excitation it is not readily observable with both achiral emitters and metamaterials. Here, we report the observation of photonic spin-momentum locking in the form of directional and chiral emission from achiral quantum dots (QDs) evanescently coupled to achiral hyperbolic metamaterials (HMM). Efficient coupling between QDs and the metamaterial leads to emergence of these photonic topological modes which can be detected in the far field. We provide theoretical explanation for the emergence of spin-momentum locking through rigorous modeling based on photon Green's function where pseudo spin of light arises from coupling of QDs to evanescent modes of HMM.

19.
Eur Rev Med Pharmacol Sci ; 24(10): 5819-5829, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32495921

RESUMEN

In the 21st century, human civilization has witnessed three major epidemics caused by Coronaviruses namely severe acute respiratory syndrome coronavirus (SARS CoV) in 2003, Middle East respiratory syndrome coronavirus (MERS CoV) in 2012 and 2019 novel coronavirus (2019 nCoV) or coronavirus disease (COVID 19) in 2019. Among these, COVID-19 has greater transmission and mortality rate. 2019 nCoV belongs to a large family of positive sense single-stranded RNA viruses (+ssRNA) that can be isolated in different animal species. The most communal symptoms of COVID-19 include fever, cough, and shortness of breath during the incubation period (2-14 days) of infection. COVID-19 transmission is occurring from infected humans to close contact with one another through respiratory droplets, coughs, and sneezes of infected person. Moreover, the virus containing surfaces may also transmit the infection. Diagnosis is being carried out by collecting a nasopharyngeal swab or sputum specimen for detection of SARS-CoV-2 RNA by reverse-transcription polymerase chain reaction (RT-PCR). Rapid diagnosing methods are also under development which can diagnose COVID 19 in few minutes to hours. Currently, there is no specific cure or preventive therapeutics available. Hence, based upon limited in-vitro and anecdotal data, Chloroquine, or Hydroxychloroquine, Remdesivir, Lopinavir and Ritonavir are being employed in the management. Search for new specific anti-viral drugs from natural/synthetic origins is under full swing and many of them are currently used as chemotherapeutic drugs under clinical investigation. Yet, there is a strong need for development of vaccine, which may take several months to few years for the development.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Humanos , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , ARN Viral/genética , ARN Viral/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2 , Análisis de Supervivencia
20.
Angew Chem Int Ed Engl ; 59(31): 13079-13085, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32367621

RESUMEN

Room-temperature phosphorescence of metal and heavy atom-free organic molecules has emerged as an area of great potential in recent years. A rational design played a critical role in controlling the molecular ordering to impart efficient intersystem crossing and stabilize the triplet state to achieve room-temperature ultralong phosphorescence. However, in most cases, the strategies to strengthen phosphorescence efficiency have resulted in a reduced lifetime, and the available nearly degenerate singlet-triplet energy levels impart a natural competition between delayed fluorescence and phosphorescence, with the former one having the advantage. Herein, an organic helical assembly supports the exhibition of an ultralong phosphorescence lifetime. In contrary to other molecules, 3,6-phenylmethanone functionalized 9-hexylcarbazole exhibits a remarkable improvement in phosphorescence lifetime (>4.1 s) and quantum yield (11 %) owing to an efficient molecular packing in the crystal state. A right-handed helical molecular array act as a trap and exhibits triplet exciton migration to support the exceptionally longer phosphorescence lifetime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA