Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
ACS Omega ; 8(39): 36449-36459, 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37810728

In this work, a sustainable method was developed for the production of water-soluble carbon quantum dots employing a green approach. The synthetic protocol was employed using the microwave pyrolysis technique, while lemon peel served as a carbon precursor. Fabrication of highly fluorescent lemon-peel-derived CQDs (LP-CQDs) having inherent nitrogen functionality was validated by X-ray photoelectron spectroscopy, FTIR, X-ray diffraction, Raman spectroscopic analysis, and TEM techniques. The average particle size of fabricated LP-CQDs was 4.46 nm. LP-CQDs yielded a remarkable quantum yield of 49.5%, which displayed excellent salinity, photostability, storage time, conditions, and pH stability. LP-CQDs displayed encouraging results for tetracycline (TC) detection using a PL turn-off approach. The sensitivity of LP-CQDs toward TC was seen in a nanomolar range having a detection limit of 50.4 nM. Method validation was comprehensively studied to ensure the precision of the nanosensor. A complete analysis of different photophysical parameters of LP-CQDs was performed with TC to gain a deeper understanding of the sensing mechanism. Fabricated LP-CQDs showed fluorescence quenching toward TC, elucidated by the inner filter effect (IFE) mechanism. The synthesized nanoprobe demonstrated a lesser detection limit with a broad linear range, enabling facile, cheap, environmentally friendly, and fast detection of TC. Practicality of the detection method was assessed through analysis of real samples, resulting in satisfactory recovery percentage and relative standard deviation with respect to the developed probes. Furthermore, LP-CQDs were used as fluorescent inks and to fabricate paper-based fluorescent strips. This study lays the door for the sensing platform of LP-CQDs toward detection of TC, which may impact the potential role of environmental sustainability.

2.
ACS Omega ; 8(24): 22178-22189, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37360434

Green-emissive carbon quantum dots (CQDs) with exclusive chemosensing aspects were synthesized from orange pomace as a biomass-based precursor via a facile microwave method without using any chemicals. The synthesis of highly fluorescent CQDs with inherent nitrogen was confirmed through X-ray diffraction, X-ray photoelectron, Fourier transform infrared, Raman, and transmission electron microscopic techniques. The average size of the synthesized CQDs was found to be 7.5 nm. These fabricated CQDs displayed excellent photostability, water solubility, and outstanding fluorescent quantum yield, i.e., 54.26%. The synthesized CQDs showed promising results for the detection of Cr6+ ions and 4-nitrophenol (4-NP). The sensitivity of CQDs toward Cr6+ and 4-NP was found up to the nanomolar range with the limit of detection values of 59.6 and 14 nM, respectively. Several analytical performances were thoroughly studied for high precision of dual analytes of the proposed nanosensor. Various photophysical parameters of CQDs (quenching efficiency, binding constant, etc.) were analyzed in the presence of dual analytes to gain more insights into the sensing mechanism. The synthesized CQDs exhibited fluorescence quenching toward incrementing the quencher concentration, which was rationalized by the inner filter effect through time-correlated single-photon counting measurements. The CQDs fabricated in the current work exhibited a lower detection limit and a wide linear range through the simple, eco-friendly, and rapid detection of Cr6+ and 4-NP ions. To evaluate the feasibility of the detection approach, real sample analysis was conducted, demonstrating satisfactory recovery rates and relative standard deviations toward the developed probes. This research paves the way for developing CQDs with superior characteristics utilizing orange pomace (biowaste precursor).

3.
ACS Biomater Sci Eng ; 8(11): 4764-4776, 2022 Nov 14.
Article En | MEDLINE | ID: mdl-36200295

Herein, eco-friendly, water-soluble, and fluorescent carbon quantum dots (CQDs) with an average size of 8.3 nm were synthesized from rice husk (RH) using the hydrothermal method, and the CQDs were labeled as rice husk CQDs (RH-CQDs). The composition and surface functionalities were studied using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. A study on the impact of pH and irradiation time on fluorescence affirmed the stability of RH-CQDs. The as-synthesized nanosensor has high selectivity and sensitivity for Fe3+ ions. Several photophysical studies were performed to investigate the interaction between RH-CQDs and Fe3+. Using the time-correlated single-photon technique, it is determined that the average lifetime value of RH-CQDs significantly decreases in the presence of Fe3+, which supports a dynamic quenching mechanism. The developed sensor exhibited excellent sensitivity with a detection limit in the nanomolar range (149 nM) with a wide linear range of 0-1300 nM for Fe3+ ions. The prepared nanosensor was also used to detect Fe3+ in a tablet supplement with high recoveries. Moreover, the RH-CQD nanoprobe was used to detect other analytes (fluoroquinolones) using the fluorescence enhancement technique. It showed high selectivity and sensitivity toward ofloxacin (OFX) and ciprofloxacin (CPX). The detection limits calculated were 150 nM and 127 nM with a linearity range of 50-1150 nM for OFX and CPX, respectively. The enhancement of the average lifetime value and quantum yield in the presence of OFX and CPX favors the increased fluorescence property of RH-CQDs through hydrogen bonding and charge transfer. In this work, the integration of two different mechanisms (fluorescence quenching and fluorescence enhancement) was followed to construct a single sensing platform for accurate quantification of dual-mode nanosensors for the detection of metal ions and fluoroquinolones by the excited-state electron transfer and hydrogen bonding mechanism, respectively. This strategy also stimulates the detection of more than one analyte.


Oryza , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Fluoroquinolones , Limit of Detection , Ions
4.
ACS Appl Bio Mater ; 2022 Aug 30.
Article En | MEDLINE | ID: mdl-36040854

Carbon nanofibers (CNFs) display colossal potential in different fields like energy, catalysis, biomedicine, sensing, and environmental science. CNFs have revealed extensive uses in various sensing platforms due to their distinctive structure, properties, function, and accessible surface functionalization capabilities. This review presents insight into various fabrication methods for CNFs like electrospinning, chemical vapor deposition, and template methods with merits and demerits of each technique. Also, we give a brief overview of CNF functionalization. Their unique physical and chemical properties make them promising candidates for the sensor applications. This review offers detailed discussion of sensing applications (strain sensor, biosensor, small molecule detection, food preservative detection, toxicity biomarker detection, and gas sensor). Various sensing applications of CNF like human motion monitoring and energy storage and conversion are discussed in brief. The challenges and obstacles associated with CNFs for futuristic applications are discussed. This review will be helpful for readers to understand the different fabrication methods and explore various applications of the versatile CNFs.

5.
Chem Eng J ; 421(1)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34504393

Microplastics (MPs) and nanoplastics (NPs) have gained much attention in recent years because of their ubiquitous presence, which is the widely acknowledged threat to the environment. MPs can be <5 mm size, while NPs are <100 nm, and both can be detected in various forms and shapes in the environment to alleviate their harmful effects on aquatic species, soil organisms, birds, and humans. In efforts to address these issues, the present review discusses about sampling methods for water, sediments, and biota along with their merits and demerits. Various identification techniques such as FTIR, Raman, ToF-SIMS, MALDI TOF MS, and ICP-MS are critically discussed. The detrimental effects caused by MPs and NPs are discussed critically along with the efficient and cost-effective treatment processes including membrane technologies in order to remove plastics particles from various sources to mitigate their environmental pollution and risk assessment.

6.
J Environ Manage ; 273: 111096, 2020 Nov 01.
Article En | MEDLINE | ID: mdl-32734892

Environmental sustainability criteria and rising energy demands, exhaustion of conventional resources of energy followed by environmental degradation due to abrupt climate changes have shifted the attention of scientists to seek renewable sources of green and clean energy for sustainable development. Bioenergy is an excellent alternative since it can be applied for several energy-requirements after utilizing suitable conversion methodology. This review elucidates all aspects of biofuels (bioethanol, biodiesel, and butanol) and their sustainability criteria. The principal focus is on the latest developments in biofuel production chiefly stressing on the role of nanotechnology. A plethora of investigations regarding the emerging techniques for process improvement like integration methods, less energy-intensive distillation techniques, and bioengineering of microorganisms are discussed. This can assist in making biofuel-production in a real-world market more economically and environmentally viable.


Biofuels , Microalgae , Bioengineering , Biotechnology , Conservation of Natural Resources
7.
Sens Int ; 1: 100026, 2020.
Article En | MEDLINE | ID: mdl-34766040

The world has been suffering under the horrendous effects of COVID-19 both in terms of loss of human lives and numerous tangible as well as financial losses. There has been some contrast on the magnitude of its impact in various parts of the world. The most peculiar one is the impact of COVID-19 in India as compared to other developed nations. Having the second largest population along with poor health infrastructural facilities, India has fairly performed well in its initial fight against COVID-19 as compared to the far developed and equipped countries. This variance has aroused much discussion and deliberations among the academia and medical doctors to seek possible explanations. This report elaborates on factors such as dietary habits, vaccination (BCG), exposure to unsanitary surroundings, and climatic conditions, which could be the explanation for the contrasting impact of COVID-19 in India and other developed nations.

8.
Sens Int ; 1: 100038, 2020.
Article En | MEDLINE | ID: mdl-34766043

The fight with COVID-19 pandemic seems nowhere near the end and is extremely daunting. An upsurge in cases of mental illness in India post the pandemic is a clear indicator of its scary impact. The situation of lockdown is causing the feeling of distress, agitation and helplessness among the people. Healthcare workers, poverty-stricken people, elderly, kids and persons with some pre-existing medical condition are more vulnerable to anxiety currently. Practicing a healthy lifestyle; yoga, meditation, avoiding reading too much about the pandemic and being with family are the ways to assuage stress.

...