Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Physiol ; 602(10): 2343-2358, 2024 May.
Article En | MEDLINE | ID: mdl-38654583

Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.


Mice, Transgenic , Neuronal Plasticity , Pyramidal Cells , Animals , Neuronal Plasticity/physiology , Mice , Pyramidal Cells/physiology , GABAergic Neurons/physiology , Learning/physiology , Long-Term Potentiation/physiology , Male , Synapses/physiology , Optogenetics , Neural Inhibition/physiology , Piriform Cortex/physiology , Mice, Inbred C57BL , Long-Term Synaptic Depression/physiology
2.
Exp Brain Res ; 240(2): 611-629, 2022 Feb.
Article En | MEDLINE | ID: mdl-34988597

Memory of a sequence of distinct events requires encoding the temporal order as well as the intervals that separates these events. In this study, using order-place association task where the animal learns to associate the location of the food pellet to the order of entry into the event arena, we probe the nature of temporal order memory in mice. In our task, individual trials become distinct events, as the animal is trained to form a unique association between entry order and a correct location. The inter-trial intervals (> 30 min) are chosen deliberately to minimize the inputs from working memory. We develop this paradigm initially using four order-place associates and later extend it to five paired associates. Our results show that animals not only acquire these explicit (entry order to place) associations but also higher order associations that can only be inferred implicitly (temporal relation between the events) from the temporal order of these events. As an indicator of such higher order learning during the probe trial, the mice exhibit predominantly prospective errors that decline proportionally with temporal distance. On the other hand, prior to acquiring the sequence, the retrospective errors are dominant. In addition, we also tested the nature of such acquisitions when temporal order CS is presented along with flavored pellet as a compound stimulus comprising of order and flavor both simultaneously being paired with location. Results from these experiments indicate that the animal learns both order-place and flavor-place associations. Comparing with pure order-place training, we find that the additional flavor stimulus in a compound training paradigm did not interfere with the ability of the animals to acquire the order-place associations. When tested remotely, pure order-place associations could be retrieved only after a reminder training. Further higher order associations representing the temporal relationship between the events is markedly absent in the remote time.


Learning , Animals , Mice , Prospective Studies , Retrospective Studies
3.
Sci Rep ; 10(1): 962, 2020 01 22.
Article En | MEDLINE | ID: mdl-31969605

Long-term memory of complex olfactory learning is expressed by wide spread enhancement in excitatory and inhibitory synaptic transmission onto piriform cortex pyramidal neurons. A particularly interesting modification in synaptic inhibition is the hyperpolarization of the reversal potential of the fast post synaptic inhibitory potential (fIPSP). Here we study the mechanism underlying the maintenance of such a shift in the fIPSP. Blocking of the neuronal specific K+-Cl- co-transporter (KCC2) in neurons of trained rats significantly depolarized the averaged fIPSP reversal potential of the spontaneous miniature inhibitory post synaptic currents (mIPSCs), to the averaged pre-training level. A similar effect was obtained by blocking PKC, which was previously shown to upregulate KCC2. Accordingly, the level of PKC-dependent phosphorylation of KCC2, at the serine 940 site, was significantly increased after learning. In contrast, blocking two other key second messenger systems CaMKII and PKA, which have no phosphorylation sites on KCC2, had no effect on the fIPSP reversal potential. Importantly, the PKC inhibitor also reduced the averaged amplitude of the spontaneous miniature excitatory synaptic currents (mEPSCs) in neurons of trained rats only, to the pre-training level. We conclude that learning-induced hyper-polarization of the fIPSP reversal potential is mediated by PKC-dependent increase of KCC2 phosphorylation.


Discrimination Learning/physiology , Neural Inhibition/physiology , Protein Kinase C/metabolism , Symporters/metabolism , Synapses/metabolism , Up-Regulation/drug effects , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Discrimination Learning/drug effects , Enzyme Inhibitors/pharmacology , Male , Miniature Postsynaptic Potentials/drug effects , Miniature Postsynaptic Potentials/physiology , Neural Inhibition/drug effects , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Protein Kinase C/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Smell/drug effects , Smell/physiology , Symporters/antagonists & inhibitors , Synapses/drug effects , K Cl- Cotransporters
...