Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Clin Transl Med ; 14(4): e1648, 2024 04.
Article En | MEDLINE | ID: mdl-38602256

BACKGROUND: Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS: To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS: Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS: USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).


Neoplasms , Ubiquitin-Specific Peptidase 7 , Vascular Endothelial Growth Factor A , Humans , CCAAT-Enhancer-Binding Proteins/pharmacology , Fibroblasts/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neovascularization, Pathologic/drug therapy , Tumor Microenvironment , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors
2.
Nat Commun ; 10(1): 2534, 2019 06 10.
Article En | MEDLINE | ID: mdl-31182716

The suppressor of cytokine signaling 2 (SOCS2) acts as substrate recognition subunit of a Cullin5 E3 ubiquitin ligase complex. SOCS2 binds to phosphotyrosine-modified epitopes as degrons for ubiquitination and proteasomal degradation, yet the molecular basis of substrate recognition has remained elusive. Here, we report co-crystal structures of SOCS2-ElonginB-ElonginC in complex with phosphorylated peptides from substrates growth hormone receptor (GHR-pY595) and erythropoietin receptor (EpoR-pY426) at 1.98 Å and 2.69 Å, respectively. Both peptides bind in an extended conformation recapitulating the canonical SH2 domain-pY pose, but capture different conformations of the EF loop via specific hydrophobic interactions. The flexible BG loop is fully defined in the electron density, and does not contact the substrate degron directly. Cancer-associated SNPs located around the pY pocket weaken substrate-binding affinity in biophysical assays. Our findings reveal insights into substrate recognition and specificity by SOCS2, and provide a blueprint for small molecule ligand design.


Suppressor of Cytokine Signaling Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Crystallography, X-Ray , Humans , Phosphotyrosine/chemistry , Polymorphism, Single Nucleotide , Protein Conformation , Receptors, Erythropoietin/chemistry , Receptors, Somatotropin/chemistry , Sequence Alignment , Substrate Specificity , Suppressor of Cytokine Signaling Proteins/genetics , Ubiquitination
...