Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Dalton Trans ; 53(7): 3132-3142, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38236139

Vanadium oxides are promising oxidation catalysts because of their rich redox chemistry. We report the synthesis of VO2 nanocrystals with VO2(B) crystal structure. By varying the mixing ratio of the components of a binary ethanol/water mixture, different VO2 nanocrystal morphologies (nanorods, -urchins, and -sheets) could be made selectively in pure form. Polydisperse VO2(B) nanorods with lengths between 150 nm and a few micrometers were formed at large water : ethanol ratios between 4 : 1 and 3 : 2. At a water : ethanol ratio of 1 : 9 VO2 nanosheets with diameters of ∼50-70 nm were formed, which aggregated to nano-urchins with diameters of ∼200 nm in pure ethanol. The catalytic activity of VO2 nanocrystals for the oxidation of alcohols was studied as a function of nanocrystal morphology. VO2 nanocrystals with all morphologies were catalytically active. The activity for the oxidation of benzyl alcohol to benzaldehyde was about 30% higher than that for the oxidation of furfuryl alcohol to furfural. This is due to the substrate structure. The oxidation activity of VO2 nanostructures decreases in the order of nanourchins > nanosheets > nanorods.

2.
ACS Omega ; 9(2): 2770-2782, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38250433

Herein, we report a solvent-less, straightforward, and facile mechanochemical technique to synthesize nanocomposites of Ag2O nanoparticles-doped MnO2, which is further codoped with nitrogen-doped graphene (N-DG) [i.e., (X %)N-DG/MnO2-(1% Ag2O)] using physical milling of separately prepared N-DG and Ag2O NPs-MnO2 annealed at 400 °C over an eco-friendly ball-mill process. To assess the efficiency in terms of catalytic performance of the nanocomposites, selective oxidation of benzyl alcohol (BlOH) to benzaldehyde (BlCHO) is selected as a substrate model with an eco-friendly oxidizing agent (O2 molecule) and without any requirements for the addition of any harmful additives or bases. Various nanocomposites were prepared by varying the amount of N-DG in the composite, and the results obtained highlighted the function of N-DG in the catalyst system when they are compared with the catalyst MnO2-(1% Ag2O) [i.e., undoped catalyst] and MnO2-(1% Ag2O) codoped with different graphene dopants such as GRO and H-RG for alcohol oxidation transformation. The effects of various catalytic factors are systematically evaluated to optimize reaction conditions. The N-DG/MnO2-(1% Ag2O) catalyst exhibits premium specific activity (16.0 mmol/h/g) with 100% BlOH conversion and <99.9% BlCHO selectivity within a very short interval. The mechanochemically prepared N-DG-based nanocomposite displayed higher catalytic efficacy than that of the MnO2-(1% Ag2O) catalyst without the graphene dopant, which is N-DG in this study. A wide array of aromatic, heterocyclic, allylic, primary, secondary, and aliphatic alcohols have been selectively converted to respective ketones and aldehydes with full convertibility without further oxidation to acids over N-DG/MnO2-(1% Ag2O). Interestingly, it is also found that the N-DG/MnO2-(1% Ag2O) can be efficiently reused up to six times without a noteworthy decline in its effectiveness. The prepared nanocomposites were characterized using various analytical, microscopic, and spectroscopic techniques such as X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman, field emission scanning electron microscopy, and Brunauer-Emmett-Teller.

3.
Materials (Basel) ; 16(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37763616

Semiconducting nanomaterials based heterogeneous photocatalysis represent a low-cost, versatile technique for environmental remediation, including pollution mitigation, energy management and other environmental aspects. Herein, we demonstrate the syntheses of various heterogeneous photocatalysts based on highly reduced graphene oxide (HRG) and vanadium oxide (VOx)-based nanocomposites (HRG-VOx). Different shapes (rod, sheet and urchin forms) of VOx nanoparticles were successfully fabricated on the surface of HRG under solvo-/hydrothermal conditions by varying the amount of water and ethanol. The high concentration of water in the mixture resulted in the formation of rod-shaped VOx nanoparticles, whereas increasing the amount of ethanol led to the production of VOx sheets. The solvothermal condition using pure ethanol as solvent produced VOx nano-urchins on the surface of HRG. The as-prepared hybrid materials were characterized using various spectroscopic and microscopic techniques, including X-ray diffraction, UV-vis, FTIR, SEM and TEM analyses. The photocatalytic activities of different HRG-VOx nanocomposites were investigated for the photodegradation of methylene blue (MB) and methyl orange (MO). The experimental data revealed that all HRG-VOx composite-based photocatalysts demonstrated excellent performance toward the photocatalytic degradation of the organic dyes. Among all photocatalysts studied, the HRG-VOx nanocomposite consisting of urchin-shaped VOx nanoparticles (HRG-VOx-U) demonstrated superior photocatalytic properties towards the degradation of dyes.

4.
Front Bioeng Biotechnol ; 11: 1149588, 2023.
Article En | MEDLINE | ID: mdl-37025362

Background: Bacterial infections and cancers may cause various acute or chronic diseases, which have become serious global health issues. This requires suitable alternatives involving novel and efficient materials to replace ineffective existing therapies. In this regard, graphene composites are being continuously explored for a variety of purposes, including biomedical applications, due to their remarkable properties. Methods: Herein, we explore, in-vitro, the different biological properties of highly reduced graphene oxide (HRG), including anti-cancer, anti-bacterial, and anti-biofilm properties. Furthermore, to analyze the interactions of graphene with proteins of microbes, in silico docking analysis was also carried out. To do this, HRG was prepared using graphene oxide as a precursor, which was further chemically reduced to obtain the final product. The as-prepared HRG was characterized using different types of microscopic and spectroscopic techniques. Results: The HRG revealed significant cytotoxic ability, using a dose-dependent anti-cell proliferation approach, which substantially killed human breast cancer cells (MCF-7) with IC50 of 29.51 ± 2.68 µg/mL. The HRG demonstrated efficient biological properties, i.e., even at low concentrations, HRG exhibited efficient anti-microbial properties against a variety of microorganisms. Among the different strains, Gram-positive bacteria, such as B. subtilis, MRSA, and S. aureus are more sensitive to HRG compared to Gram-negative bacteria. The bactericidal properties of HRG are almost similar to a commercially available effective antibiotic (ampicillin). To evaluate the efficacy of HRG against bacterial biofilms, Pseudomonas aeruginosa and MRSA were applied, and the results were compared with gentamycin and ampicillin, which are commonly applied standard antibiotics. Notably, HRG demonstrated high inhibition (94.23%) against P.aeruginosa, with lower MIC (50 µg/mL) and IC50 (26.53 µg/mL) values, whereas ampicillin and gentamicin showed similar inhibition (90.45% and 91.31% respectively) but much higher MIC and IC50 values. Conclusion: Therefore, these results reveal the excellent biopotential of HRG in different biomedical applications, including cancer therapy; antimicrobial activity, especially anti-biofilm activity; and other biomedicine-based therapies. Based on the molecular docking results of Binding energy, it is predicted that pelB protein and HRG would form the best stable docking complex, and high hydrogen and hydrophobic interactions between the pelB protein and HRG have been revealed. Therefore, we conclude that HRG could be used as an antibiofilm agent against P. aeruginosa infections.

5.
Polymers (Basel) ; 15(3)2023 Jan 22.
Article En | MEDLINE | ID: mdl-36771872

Hydrogel electrolytes for energy storage devices have made great progress, yet they present a major challenge in the assembly of flexible supercapacitors with high ionic conductivity and self-healing properties. Herein, a smart self-healing hydrogel electrolyte based on alginate/poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (alginate/PEDOT:PSS)(A/P:P) was prepared, wherein H2SO4 was employed as a polymeric initiator, as well as a source of ions. PEDOT:PSS is a semi-interpenetrating network (IPN) that has been used in recent studies to exhibit quick self-healing properties with the H2SO3 additive, which further improves its mechanical strength and self-healing performance. A moderate amount of PEDOT:PSS in the hydrogel (5 mL) was found to significantly improve the ionic conductivity compared to the pure hydrogel of alginate. Interestingly, the alginate/PEDOT:PSS composite hydrogel exhibited an excellent ability to self-heal and repair its original composition within 10 min of cutting. Furthermore, the graphite conductive substrate-based supercapacitor with the alginate/PEDOT:PSS hydrogel electrolyte provided a high specific capacitance of 356 F g-1 at 100 mV/s g-1. The results demonstrate that the A/P:P ratio with 5 mL PEDOT:PSS had a base sheet resistance of 0.9 Ω/square. This work provides a new strategy for designing flexible self-healing hydrogels for application in smart wearable electronics.

6.
Front Chem ; 10: 872366, 2022.
Article En | MEDLINE | ID: mdl-35572099

The formation of a C-C bond through Mizoroki-Heck cross-coupling reactions in water with efficient heterogeneous catalysts is a challenging task. In this current study, a highly reduced graphene oxide (HRG) immobilized palladium (Pd) nanoparticle based catalyst (HRG-Py-Pd) is used to catalyze Mizoroki-Heck cross-coupling reactions in water. During the preparation of the catalyst, amino pyrene is used as a smart functionalizing ligand, which offered chemically specific binding sites for the effective and homogeneous nucleation of Pd NPs on the surface of HRG, which significantly enhanced the physical stability and dispersibility of the resulting catalyst in an aqueous medium. Microscopic analysis of the catalyst revealed a uniform distribution of ultrafine Pd NPs on a solid support. The catalytic properties of HRG-Py-Pd are tested towards the Mizoroki-Heck cross-coupling reactions of various aryl halides with acrylic acid in an aqueous medium. Furthermore, the catalytic efficacy of HRG-Py-Pd is also compared with its non-functionalized counterparts such as HRG-Pd and pristine Pd NPs (Pd-NPs). Using the HRG-Py-Pd nanocatalyst, the highest conversion of 99% is achieved in the coupling reaction of 4-bromoanisol and acrylic acid in an aqueous solution in a relatively short period of time (3 h), with less quantity of catalyst (3 mg). Comparatively, pristine Pd NPs delivered lower conversion (∼92%) for the same reaction required a long reaction time and a large amount of catalyst (5.3 mg). Indeed, the conversion of the reaction further decreased to just 40% when 3 mg of Pd-NPs was used which was sufficient to produce 99% conversion in the case of HRG-Py-Pd. On the other hand, HRG-Pd did not deliver any conversion and was ineffective even after using a high amount of catalyst and a longer reaction time. The inability of the HRG-Pd to promote coupling reactions can be attributed to the agglomeration of Pd NPs which reduced the dispersion quality of the catalyst in water. Therefore, the high aqueous stability of HRG-Py-Pd due to smart functionalization can be utilized to perform other organic transformations in water which was otherwise not possible.

7.
ACS Omega ; 7(6): 4812-4820, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35187301

Eco-friendly approaches for the preparation of nanomaterials have recently attracted considerable attention of scientific community due to rising environmental distresses. The aim of the current study is to prepare titanium dioxide (TiO2) nanoparticles (NPs) using an eco-friendly approach and investigate their performance for the photocatalytic degradation of hazardous organic dyes. For this, TiO2 NPs were prepared by using the aqueous extract of the Pulicaria undulata (L.) plant in a single step at room temperature. Energy-dispersive X-ray spectroscopy established the presence of both titanium and oxygen in the sample. X-ray diffraction revealed the formation of crystalline, anatase-phase TiO2 NPs. On the other hand, transmission election microscopy confirmed the formation of spherical shaped NPs. The presence of residual phytomolecules as capping/stabilization agents is confirmed by UV-vis analysis and Fourier-transform Infrared spectroscopy. Indeed, in the presence of P. undulata, the anatase phase of TiO2 is stabilized at a significantly lower temperature (100 °C) without using any external stabilizing agent. The green synthesized TiO2 NPs were used to investigate their potential for the photocatalytic degradation of hazardous organic dyes including methylene blue and methyl orange under UV-visible light irradiation. Due to the small size and high dispersion of NPs, almost complete degradation (∼95%) was achieved in a short period of time (between 1 and 2 h). No significant difference in the photocatalytic activity of the TiO2 NPs was observed even after repeated use (three times) of the photocatalyst. Overall, the green synthesized TiO2 NPs exhibited considerable potential for fast and eco-friendly removal of harmful organic dyes.

8.
Chem Rec ; 22(7): e202100274, 2022 Jul.
Article En | MEDLINE | ID: mdl-35103379

Graphene-based nanocomposites with inorganic (metal and metal oxide) nanoparticles leads to materials with high catalytic activity for a variety of chemical transformations. Graphene and its derivatives such as graphene oxide, highly reduced graphene oxide, or nitrogen-doped graphene are excellent support materials due to their high surface area, their extended π-system, and variable functionalities for effective chemical interactions to fabricate nanocomposites. The ability to fine-tune the surface composition for desired functionalities enhances the versatility of graphene-based nanocomposites in catalysis. This review summarizes the preparation of graphene/inorganic NPs based nanocomposites and their use in catalytic applications. We discuss the large-scale synthesis of graphene-based nanomaterials. We have also highlighted the interfacial electronic communication between graphene/inorganic nanoparticles and other factors resulting in increased catalytic efficiencies.

9.
Molecules ; 28(1)2022 Dec 28.
Article En | MEDLINE | ID: mdl-36615440

Green syntheses of metallic nanoparticles using plant extracts as effective sources of reductants and stabilizers have attracted decent popularity due to their non-toxicity, environmental friendliness and rapid nature. The current study demonstrates the ecofriendly, facile and inexpensive synthesis of silver nanoparticles (AP-AgNPs) using the extract of aerial parts of the Anthemis pseudocotula Boiss. plant (AP). Herein, the aerial parts extract of AP performed a twin role of a reducing as well as a stabilizing agent. The green synthesized AP-AgNPs were characterized by several techniques such as XRD, UV-Vis, FT-IR, TEM, SEM and EDX. Furthermore, the antimicrobial and antibiofilm activity of as-prepared AP-AgNPs were examined by a standard two-fold microbroth dilution method and tissue culture plate methods, respectively, against several Gram-negative and Gram-positive bacterial strains and fungal species such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and Acinetobacter baumannii (MDR-AB), methicillin-resistant S. aureus (MRSA) and Candida albicans (C. albicans) strains. The antimicrobial activity results clearly indicated that the Gram-negative bacteria MDR-PA was most affected by AgNPs as compared to other Gram-negative and Gram-positive bacteria and fungi C. albicans. Whereas, in the case of antibiofilm activity, it has been found that AgNPs at 0.039 mg/mL, inhibit biofilms formation of Gram-negative bacteria i.e., MDR-PA, E. coli, and MDR-AB by 78.98 ± 1.12, 65.77 ± 1.05 and 66.94 ± 1.35%, respectively. On the other hand, at the same dose (i.e., 0.039 mg/mL), AP-AgNPs inhibits biofilm formation of Gram-positive bacteria i.e., MRSA, S. aureus and fungi C. albicans by 67.81 ± 0.99, 54.61 ± 1.11 and 56.22 ± 1.06%, respectively. The present work indicates the efficiency of green synthesized AP-AgNPs as good antimicrobial and antibiofilm agents against selected bacterial and fungal species.


Anthemis , Anti-Infective Agents , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Candida albicans , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Plant Components, Aerial , Plant Extracts/pharmacology , Pseudomonas aeruginosa , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
10.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Article En | MEDLINE | ID: mdl-36616039

This work demonstrates hydrazine electro-oxidation and sensing using an ultrathin copper oxide nanosheet (CuO-NS) architecture prepared via a versatile foam-surfactant dual template (FSDT) approach. CuO-NS was synthesised by chemical deposition of the hexagonal surfactant Brij®58 liquid crystal template containing dissolved copper ions using hydrogen foam that was concurrently generated by a sodium borohydride reducing agent. The physical characterisations of the CuO-NS showed the formation of a two-dimensional (2D) ultrathin nanosheet architecture of crystalline CuO with a specific surface area of ~39 m2/g. The electrochemical CuO-NS oxidation and sensing performance for hydrazine oxidation revealed that the CuO nanosheets had a superior oxidation performance compared with bare-CuO, and the reported state-of-the-art catalysts had a high hydrazine sensitivity of 1.47 mA/cm2 mM, a low detection limit of 15 µM (S/N = 3), and a linear concentration range of up to 45 mM. Moreover, CuO-NS shows considerable potential for the practical use of hydrazine detection in tap and bottled water samples with a good recovery achieved. Furthermore, the foam-surfactant dual template (FSDT) one-pot synthesis approach could be used to produce a wide range of nanomaterials with various compositions and nanoarchitectures at ambient conditions for boosting the electrochemical catalytic reactions.

11.
ACS Omega ; 6(23): 15147-15155, 2021 Jun 15.
Article En | MEDLINE | ID: mdl-34151094

Graphene nanocomposites have gained significant interest in a variety of biological applications due to their unique properties. Herein, we have studied the apoptosis-inducing ability and anticancer properties of functionalized highly reduced graphene oxide (HRG) and gold nanoparticles (Au NPs)-based nanocomposites (AP-HRG-Au). Samples were prepared under facile conditions via simple stirring and ultrasonication. All the samples were tested for their anticancer properties against different human cancer cell lines including lung (A549), liver (HepG2), and breast (MCF-7) cancer cells using doxorubicin as a positive control. In order to enhance the solubility and bioavailability of the sample, HRG was functionalized with 1-aminopyrene (1-AP) as a stabilizing ligand. The ligand also facilitated the homogeneous growth of Au NPs on the surface of HRG by offering chemically specific binding sites. The synthesis of nanocomposites and the surface functionalization of HRG were confirmed by UV-Vis, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The structure and morphology of the as-prepared nanocomposites were established by high-resolution transmission electron microscopy. Because of the functionalization, the AP-HRG-Au nanocomposite exhibited enhanced physical stability and high dispersibility. A comparative anticancer study of pristine HRG, nonfunctionalized HRG-Au, and 1-AP-functionalized AP-HRG-Au nanocomposites revealed the enhanced apoptosis ability of functionalized nanocomposites compared to the nonfunctionalized sample, whereas the pristine HRG did not show any anticancer ability against all tested cell lines. Both HRG-Au and AP-HRG-Au have induced a concentration-dependent reduction in cell viability in all tested cell lines after 48 h of exposure, with a significantly higher response in MCF-7 cells compared to the remaining cells. Therefore, MCF-7 cells were selected to perform detailed investigations using apoptosis assay, cell cycle analysis, and reactive oxygen species measurements. These results suggest that AP-HRG-Au induces enhanced apoptosis in human breast cancer cells.

12.
Saudi J Biol Sci ; 28(2): 1196-1202, 2021 Feb.
Article En | MEDLINE | ID: mdl-33613047

Due to their inexpensive and eco-friendly nature, and existence of manganese in various oxidation states and their natural abundance have attained significant attention for the formation of Mn3O4 nanoparticles (Mn3O4 NPs). Herein, we report the preparation of Mn3O4 nanoparticles using manganese nitrate as a precursor material by utilization of a precipitation technique. The as-prepared Mn3O4 nanoparticles (Mn3O4 NPs) were characterized by using X-ray powder diffraction (XRD), UV-Visible spectroscopy (UV-Vis), High-Resolution Transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM), Thermal gravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). The antimicrobial properties of the as-synthesized Mn3O4 nanoparticles were investigated against numerous bacterial and fungal strains including S. aureus, E. coli, B. subtilis, P. aeruginosa, A. flavus and C. albicans. The Mn3O4 NPs inhibited the growth of S. aureus with a minimum inhibitory concentration (MIC) of 40 µg/ml and C. albicans with a MIC of 15 µg/ml. Furthermore, the Mn3O4 NPs anti-cancer activity was examined using MTT essay against A549 lung and MCF-7 breast cancer cell lines. The Mn3O4 NPs revealed significant activity against the examined cancer cell lines A549 and MCF-7. The IC50 values of Mn3O4 NPs with A549 cell line was found at concentration of 98 µg/mL and MCF-7 cell line was found at concentration of 25 µg/mL.

13.
Materials (Basel) ; 15(1)2021 Dec 28.
Article En | MEDLINE | ID: mdl-35009367

The present work was carried out to synthesize bismuth ferrite (BFO) nanoparticles by combustion synthesis, and to evaluate the photocatalytic activity of synthesized bismuth ferrite nanoparticles against cefixime trihydrate. BFO nanoparticles were successfully synthesized using bismuth (III) nitrate and iron (III) nitrate by a combustion synthesis method employing different types of fuels such as maltose, succinic acid, cinnamic acid, and lactose. The effects of the different types of fuels on the morphology and size of the bismuth ferrite nanoparticles were investigated. Characterization of the as-obtained bismuth ferrite nanoparticles was carried out by different techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-Dispersive Spectroscopy (EDS), N2-sorption analysis, Fourier-transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV-vis) spectroscopy. Photoluminescence studies were also carried out for the various bismuth ferrite nanoparticles obtained. Degradation of cefixime trihydrate was investigated under sunlight to evaluate the photocatalytic properties of the bismuth ferrite nanoparticles, and it was found that the bismuth ferrite nanoparticles followed first-order degradation kinetics in solar irradiation in the degradation of antibiotic, cefixime trihydrate.

14.
Nanomaterials (Basel) ; 10(9)2020 Sep 20.
Article En | MEDLINE | ID: mdl-32962292

Plant extract of Pulicaria undulata (L.) was used as both reducing agent and stabilizing ligand for the rapid and green synthesis of gold (Au), silver (Ag), and gold-silver (Au-Ag) bimetallic (phase segregated/alloy) nanoparticles (NPs). These nanoparticles with different morphologies were prepared in two hours by stirring corresponding metal precursors in the aqueous solution of the plant extracts at ambient temperature. To infer the role of concentration of plant extract on the composition and morphology of NPs, we designed two different sets of experiments, namely (i) low concentration (LC) and (ii) high concentration (HC) of plant extract. In the case of using low concentration of the plant extract, irregular shaped Au, Ag, or phase segregated Au-Ag bimetallic NPs were obtained, whereas the use of higher concentrations of the plant extract resulted in the formation of spherical Au, Ag, and Au-Ag alloy NPs. The as-prepared Au, Ag, and Au-Ag bimetallic NPs showed morphology and composition dependent catalytic activity for the reduction of 4-nitrophenol (4-NPh) to 4-aminophenol (4-APh) in the presence of NaBH4. The bimetallic Au-Ag alloy NPs showed the highest catalytic activity compared to all other NPs.

15.
Sci Rep ; 10(1): 11728, 2020 Jul 16.
Article En | MEDLINE | ID: mdl-32678111

A facile and chemical specific method to synthesize highly reduced graphene oxide (HRG) and Pd (HRG@Pd) nanocomposite is presented. The HRG surfaces are tailored with amine groups using 1-aminopyrene (1-AP) as functionalizing molecules. The aromatic rings of 1-AP sit on the basal planes of HRG through π-π interactions, leaving amino groups outwards (similar like self-assembled monolayer on 2D substrates). The amino groups provide the chemically specific binding sites to the Pd nucleation which subsequently grow into nanoparticles. HRG@Pd nanocomposite demonstrated both uniform distribution of Pd nanoparticles on HRG surface as well as excellent physical stability and dispersibility. The surface functionalization was confirmed using, ultraviolet-visible (UV-Vis), Fourier transform infra-red and Raman spectroscopy. The size and distribution of Pd nanoparticles on the HRG and crystallinity were confirmed using high-resolution transmission electron microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The catalytic efficiency of highly reduced graphene oxide-pyrene-palladium nanocomposite (HRG-Py-Pd) is tested towards the Suzuki coupling reactions of various aryl halides. The kinetics of the catalytic reaction (Suzuki coupling) using HRG-Py-Pd nanocomposite was monitored using gas chromatography (GC).

16.
ACS Omega ; 5(4): 1987-1996, 2020 Feb 04.
Article En | MEDLINE | ID: mdl-32039336

The effective interactions of nanomaterials with biological constituents play a significant role in enhancing their biomedicinal properties. These interactions can be efficiently enhanced by altering the surface properties of nanomaterials. In this study, we demonstrate the method of altering the surface properties of ZrO2 nanoparticles (NPs) to enhance their antimicrobial properties. To do this, the surfaces of the ZrO2 NPs prepared using a solvothermal method is functionalized with glutamic acid, which is an α-amino acid containing both COO- and NH4 + ions. The binding of glutamic acid (GA) on the surface of ZrO2 was confirmed by UV-visible and Fourier transform infrared spectroscopies, whereas the phase and morphology of resulting GA-functionalized ZrO2 (GA-ZrO2) was identified by X-ray diffraction and transmission electron microscopy. GA stabilization has altered the surface charges of the ZrO2, which enhanced the dispersion qualities of NPs in aqueous media. The as-prepared GA-ZrO2 NPs were evaluated for their antibacterial properties toward four strains of oral bacteria, namely, Rothia mucilaginosa, Rothia dentocariosa, Streptococcus mitis, and Streptococcus mutans. GA-ZrO2 exhibited increased antimicrobial activities compared with pristine ZrO2. This improved activity can be attributed to the alteration of surface charges of ZrO2 with GA. Consequently, the dispersion properties of GA-ZrO2 in the aqueous solution have increased considerably, which may have enhanced the interactions between the nanomaterial and bacteria.

17.
Materials (Basel) ; 12(5)2019 Feb 28.
Article En | MEDLINE | ID: mdl-30823461

A single-step solvothermal approach to prepare stabilized cubic zirconia (ZrO2) nanoparticles (NPs) and highly reduced graphene oxide (HRG) and ZrO2 nanocomposite (HRG@ZrO2) using benzyl alcohol as a solvent and stabilizing ligand is presented. The as-prepared ZrO2 NPs and the HRG@ZrO2 nanocomposite were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD), which confirmed the formation of ultra-small, cubic phase ZrO2 NPs with particle sizes of ~2 nm in both reactions. Slight variation of reaction conditions, including temperature and amount of benzyl alcohol, significantly affected the size of resulting NPs. The presence of benzyl alcohol as a stabilizing agent on the surface of ZrO2 NPs was confirmed using various techniques such as ultraviolet-visible (UV-vis), Fourier-transform infrared (FT-IR), Raman and XPS spectroscopies and thermogravimetric analysis (TGA). Furthermore, a comparative electrochemical study of both as-prepared ZrO2 NPs and the HRG@ZrO2 nanocomposites is reported. The HRG@ZrO2 nanocomposite confirms electronic interactions between ZrO2 and HRG when compared their electrochemical studies with pure ZrO2 and HRG using cyclic voltammetry (CV).

18.
ChemistryOpen ; 6(1): 112-120, 2017 Feb.
Article En | MEDLINE | ID: mdl-28168156

We report on the synthesis of the zirconia-manganese carbonate ZrOx(x %)-MnCO3 catalyst (where x=1-7) that, upon calcination at 500 °C, is converted to zirconia-manganese oxide ZrOx(x %)-Mn2O3 . We also present a comparative study of the catalytic performance of the both catalysts for the oxidation of benzylic alcohol to corresponding aldehydes by using molecular oxygen as the oxidizing agent. ZrOx(x %)-MnCO3 was prepared through co-precipitation by varying the amounts of Zr(NO3)4 (w/w %) in Mn(NO3)2. The morphology, composition, and crystallinity of the as-synthesized product and the catalysts prepared upon calcination were studied by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. The surface areas of the catalysts [133.58 m2 g-1 for ZrOx(1 %)-MnCO3 and 17.48 m2 g-1 for ZrOx(1 %)-Mn2O3 ] were determined by using the Brunauer-Emmett-Teller method, and the thermal stability was assessed by using thermal gravimetric analysis. The catalyst with composition ZrOx(1 %)-MnCO3 pre-calcined at 300 °C exhibited excellent specific activity (48.00 mmolg-1 h-1) with complete conversion within approximately 5 min and catalyst cyclability up to six times without any significant loss in activity. The specific activity, turnover number and turnover frequency achieved is the highest so far (to the best of our knowledge) compared to the previously reported catalysts used for the oxidation of benzyl alcohol. The catalyst showed selectivity for aromatic alcohols over aliphatic alcohols.

19.
Molecules ; 22(1)2017 Jan 19.
Article En | MEDLINE | ID: mdl-28106856

The synthesis of Palladium (Pd) nanoparticles by green methods has attracted remarkable attention in recent years because of its superiority above chemical approaches, owing to its low cost and ecological compatibility. In this present work, we describe a facile and environmentally friendly synthesis of Pd nanoparticles (Pd NPs) using an aqueous extract of aerial parts of Origanum vulgare L. (OV) as a bioreductant. This plant is available in many parts of the world as well as in Saudi Arabia and is known to be a rich source of phenolic components, a feature we fruitfully utilized in the synthesis of Pd NPs, using various concentrations of plant extracts. Moreover, the OV extract phytomolecules are not only accountable for the reduction and progression of nanoparticles, but they also act as stabilizing agents, which was confirmed by several characterization methods. The as-synthesized Pd nanoparticles (Pd NPs) were analyzed using ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA). Further, FT-IR study has proven that the OV not merely represents a bioreductant but also functionalizes the nanoparticles. Furthermore, the green synthesized metallic Pd NPs were successfully applied as catalysts for selective oxidation of alcohols.


Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Origanum/chemistry , Palladium/chemistry , Plant Extracts/chemistry , Alcohols/chemistry , Catalysis , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Oxidation-Reduction
20.
Molecules ; 21(11)2016 Nov 06.
Article En | MEDLINE | ID: mdl-27827968

Microbicidal potential of silver nanoparticles (Ag-NPs) can be drastically improved by improving their solubility or wettability in the aqueous medium. In the present study, we report the synthesis of both green and chemical synthesis of Ag-NPs, and evaluate the effect of the dispersion qualities of as-prepared Ag-NPs from both methods on their antimicrobial activities. The green synthesis of Ag-NPs is carried out by using an aqueous solution of readily available Salvadora persica L. root extract (RE) as a bioreductant. The formation of highly crystalline Ag-NPs was established by various analytical and microscopic techniques. The rich phenolic contents of S. persica L. RE (Miswak) not only promoted the reduction and formation of NPs but they also facilitated the stabilization of the Ag-NPs, which was established by Fourier transform infrared spectroscopy (FT-IR) analysis. Furthermore, the influence of the volume of the RE on the size and the dispersion qualities of the NPs was also evaluated. It was revealed that with increasing the volume of RE the size of the NPs was deteriorated, whereas at lower concentrations of RE smaller size and less aggregated NPs were obtained. During this study, the antimicrobial activities of both chemically and green synthesized Ag-NPs, along with the aqueous RE of S. persica L., were evaluated against various microorganisms. It was observed that the green synthesized Ag-NPs exhibit comparable or slightly higher antibacterial activities than the chemically obtained Ag-NPs.


Anti-Infective Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Reducing Agents/pharmacology , Salvadoraceae/chemistry , Silver/pharmacology , Anti-Infective Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Green Chemistry Technology/methods , Microbial Sensitivity Tests , Particle Size , Plant Extracts/chemistry , Plant Roots/chemistry , Reducing Agents/chemistry , Silver/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared
...