Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 183
1.
Shock ; 60(1): 137-145, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37195726

ABSTRACT: Introduction: Acute respiratory distress syndrome (ARDS) is a severe hypoxemic respiratory failure with a high in-hospital mortality. However, the molecular mechanisms underlying ARDS remain unclear. Recent findings have indicated that the onset of severe inflammatory diseases, such as sepsis, is regulated by epigenetic changes. We investigated the role of epigenetic changes in ARDS pathogenesis using mouse models and human samples. Methods: Acute respiratory distress syndrome was induced in a mouse model (C57BL/6 mice, myeloid cell or vascular endothelial cell [VEC]-specific SET domain bifurcated 2 [Setdb2]-deficient mice [Setdb2 ff Lyz2 Cre+ or Setdb2 ff Tie2 Cre+ ], and Cre - littermates) by intratracheal administration of lipopolysaccharide (LPS). Analyses were performed at 6 and 72 h after LPS administration. Sera and lung autopsy specimens from ARDS patients were examined. Results: In the murine ARDS model, we observed high expression of the histone modification enzyme SET domain bifurcated 2 ( Setdb2 ) in the lungs. In situ hybridization examination of the lungs revealed Setdb2 expression in macrophages and VECs. The histological score and albumin level of bronchoalveolar lavage fluid were significantly increased in Setdb2 ff Tie2 Cre+ mice following LPS administration compared with Setdb2 ff Tie2 Cre- mice, whereas there was no significant difference between the control and Setdb2 ff Lyz2 Cre+ mice. Apoptosis of VECs was enhanced in Setdb2 ff Tie2 Cre+ mice. Among the 84 apoptosis-related genes, the expression of TNF receptor superfamily member 10b ( Tnfrsf10b ) was significantly higher in Setdb2 ff Tie2 Cre+ mice than in control mice. Acute respiratory distress syndrome patients' serum showed higher SETDB2 levels than those of healthy volunteers. SETDB2 levels were negatively correlated with the partial pressure of oxygen in arterial blood/fraction of inspiratory oxygen concentration ratio. Conclusion: Acute respiratory distress syndrome elevates Setdb2 , apoptosis of VECs, and vascular permeability. Elevation of histone methyltransferase Setdb2 suggests the possibility to histone change and epigenetic modification. Thus, Setdb2 may be a novel therapeutic target for controlling the pathogenesis of ARDS.

2.
Immunohorizons ; 7(2): 168-176, 2023 02 01.
Article En | MEDLINE | ID: mdl-36729482

Notch ligands present during interactions between T cells and dendritic cells (DCs) dictate cell phenotype through a myriad of effects including the induction of T cell regulation, survival, and cytokine response. The presence of Notch ligands on DCs varies with the context of the inflammatory response; Jagged-1 is constitutively expressed, whereas Delta-like 1 and Delta-like 4 are induced in response to pathogen exposure. Although Delta-like and Jagged ligands send different signals through the same Notch receptor, the role of these two ligands in peripheral T cell immunity is not clear. The goal of our studies was to determine the role of Jagged-1 in the pathogen-free inflammation induced by OVA during allergic airway disease in mice. Our studies show that a deletion in DC-expressed Jagged-1 causes a significant increase in cytokine production, resulting in increased mucus production and increased eosinophilia in the lungs of mice sensitized and challenged with OVA. We also observed that a reduction of Jagged-1 expression is correlated with increased expression of the Notch 1 receptor on the surface of CD4+ T cells in both the lung and lymph node. Through transfer studies using OT-II transgenic T cells, we demonstrate that Jagged-1 represses the expansion of CD44+CD62L+CCR7+ memory cells and promotes the expansion of CD44+CD62L- effector cells, but it has no effect on the expansion of naive cells during allergic airway disease. These data suggest that Jagged-1 may have different roles in Ag-specific T cell responses, depending on the maturity of the stimulated T cell.


Hypersensitivity , Th2 Cells , Mice , Animals , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cytokines/metabolism , Inflammation/metabolism
3.
Cell Mol Immunol ; 19(11): 1251-1262, 2022 11.
Article En | MEDLINE | ID: mdl-36127466

Macrophage plasticity is critical for normal tissue repair following injury. In pathologic states such as diabetes, macrophage plasticity is impaired, and macrophages remain in a persistent proinflammatory state; however, the reasons for this are unknown. Here, using single-cell RNA sequencing of human diabetic wounds, we identified increased JMJD3 in diabetic wound macrophages, resulting in increased inflammatory gene expression. Mechanistically, we report that in wound healing, JMJD3 directs early macrophage-mediated inflammation via JAK1,3/STAT3 signaling. However, in the diabetic state, we found that IL-6, a cytokine increased in diabetic wound tissue at later time points post-injury, regulates JMJD3 expression in diabetic wound macrophages via the JAK1,3/STAT3 pathway and that this late increase in JMJD3 induces NFκB-mediated inflammatory gene transcription in wound macrophages via an H3K27me3 mechanism. Interestingly, RNA sequencing of wound macrophages isolated from mice with JMJD3-deficient myeloid cells (Jmjd3f/fLyz2Cre+) identified that the STING gene (Tmem173) is regulated by JMJD3 in wound macrophages. STING limits inflammatory cytokine production by wound macrophages during healing. However, in diabetic mice, its role changes to limit wound repair and enhance inflammation. This finding is important since STING is associated with chronic inflammation, and we found STING to be elevated in human and murine diabetic wound macrophages at late time points. Finally, we demonstrate that macrophage-specific, nanoparticle inhibition of JMJD3 in diabetic wounds significantly improves diabetic wound repair by decreasing inflammatory cytokines and STING. Taken together, this work highlights the central role of JMJD3 in tissue repair and identifies cell-specific targeting as a viable therapeutic strategy for nonhealing diabetic wounds.


Diabetes Mellitus, Experimental , Mice , Humans , Animals , Mice, Inbred C57BL , Macrophages/metabolism , Wound Healing , Inflammation/metabolism , Cytokines/metabolism
4.
Ann Surg ; 276(3): 511-521, 2022 09 01.
Article En | MEDLINE | ID: mdl-35762613

OBJECTIVE: To determine cell-specific gene expression profiles that contribute to development of abdominal aortic aneurysms (AAAs). BACKGROUND: AAAs represent the most common pathological aortic dilation leading to the fatal consequence of aortic rupture. Both immune and structural cells contribute to aortic degeneration, however, gene specific alterations in these cellular subsets are poorly understood. METHODS: We performed single-cell RNA sequencing (scRNA-seq) analysis of AAAs and control tissues. AAA-related changes were examined by comparing gene expression profiles as well as detailed receptor-ligand interactions. An integrative analysis of scRNA-seq data with large genome-wide association study data was conducted to identify genes critical for AAA development. RESULTS: Using scRNA-seq we provide the first comprehensive characterization of the cellular landscape in human AAA tissues. Unbiased clustering analysis of transcriptional profiles identified seventeen clusters representing 8 cell lineages. For immune cells, clustering analysis identified 4 T-cell and 5 monocyte/macrophage subpopulations, with distinct transcriptional profiles in AAAs compared to controls. Gene enrichment analysis on immune subsets identified multiple pathways only expressed in AAA tissue, including those involved in mitochondrial dysfunction, proliferation, and cytokine secretion. Moreover, receptor-ligand analysis defined robust interactions between vascular smooth muscle cells and myeloid populations in AAA tissues. Lastly, integrated analysis of scRNA-seq data with genome-wide association study studies determined that vascular smooth muscle cell expression of SORT1 is critical for maintaining normal aortic wall function. CONCLUSIONS: Here we provide the first comprehensive evaluation of single-cell composition of the abdominal aortic wall and reveal how the gene expression landscape is altered in human AAAs.


Aortic Aneurysm, Abdominal , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Genome-Wide Association Study , Humans , Ligands , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Transcriptome
5.
JCI Insight ; 7(9)2022 05 09.
Article En | MEDLINE | ID: mdl-35358091

Wound repair following acute injury requires a coordinated inflammatory response. Type I IFN signaling is important for regulating the inflammatory response after skin injury. IFN-κ, a type I IFN, has recently been found to drive skin inflammation in lupus and psoriasis; however, the role of IFN-κ in the context of normal or dysregulated wound healing is unclear. Here, we show that Ifnk expression is upregulated in keratinocytes early after injury and is essential for normal tissue repair. Under diabetic conditions, IFN-κ was decreased in wound keratinocytes, and early inflammation was impaired. Furthermore, we found that the histone methyltransferase mixed-lineage leukemia 1 (MLL1) is upregulated early following injury and regulates Ifnk expression in diabetic wound keratinocytes via an H3K4me3-mediated mechanism. Using a series of in vivo studies with a geneticall y engineered mouse model (Mll1fl/fl K14cre-) and human wound tissues from patients with T2D, we demonstrate that MLL1 controls wound keratinocyte-mediated Ifnk expression and that Mll1 expression is decreased in T2D keratinocytes. Importantly, we found the administration of IFN-κ early following injury improves diabetic tissue repair through increasing early inflammation, collagen deposition, and reepithelialization. These findings have significant implications for understanding the complex role type I IFNs play in keratinocytes in normal and diabetic wound healing. Additionally, they suggest that IFN may be a viable therapeutic target to improve diabetic wound repair.


Diabetes Mellitus, Type 2 , Interferon Type I , Animals , Humans , Inflammation/metabolism , Mice , Wound Healing/physiology
6.
J Adv Res ; 35: 71-86, 2022 01.
Article En | MEDLINE | ID: mdl-35003795

Introduction: Mitogen-activated protein kinases (MAPKs) are involved in T cell-mediated liver damage. However, the inhibitory mechanism(s) that controls T cell-mediated liver damage remains unknown. Objectives: We investigated whether Spred2 (Sprouty-related, EVH1 domain-containing protein 2) that negatively regulates ERK-MAPK pathway has a biological impact on T cell-mediated liver damage by using a murine model. Methods: We induced hepatotoxicity in genetically engineered mice by intravenously injecting Concanavalin A (Con A) and analyzed the mechanisms using serum chemistry, histology, ELISA, qRT-PCR, Western blotting and flow cytometry. Results: Spred2-deficient mice (Spred2-/-) developed more sever liver damage than wild-type (WT) mice with increased interferon-γ (IFNγ) production. Hepatic ERK phosphorylation was enhanced in Spred2-/- mice, and pretreatment of Spred2-/- mice with the MAPK/ERK inhibitor U0126 markedly inhibited the liver damage and reduced IFNγ production. Neutralization of IFNγ abolished the damage with decreased hepatic Stat1 activation in Spred2-/- mice. IFNγ was mainly produced from CD4+ and CD8+ T cells, and their depletion decreased liver damage and IFNγ production. Transplantation of CD4+ and/or CD8+ T cells from Spred2-/- mice into RAG1-/- mice deficient in both T and B cells caused more severe liver damage than those from WT mice. Hepatic expression of T cell attractants, CXCL9 and CXCL10, was augmented in Spred2-/- mice as compared to WT mice. Conversely, liver damage, IFNγ production and the recruitment of CD4+ and CD8+ T cells in livers after Con A challenge were lower in Spred2 transgenic mice, and Spred2-overexpressing CD4+ and CD8+ T cells produced lower levels of IFNγ than WT cells upon stimulation with Con A in vitro. Conclusion: We demonstrated, for the first time, that Spred2 functions as an endogenous regulator of T cell IFNγ production and Spred2-mediated inhibition of ERK-MAPK pathway may be an effective remedy for T cell-dependent liver damage.


CD8-Positive T-Lymphocytes , Interferon-gamma , Animals , CD4-Positive T-Lymphocytes , Concanavalin A/toxicity , Interferon-gamma/genetics , Liver , Mice , Repressor Proteins
7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article En | MEDLINE | ID: mdl-34479991

COVID-19 induces a robust, extended inflammatory "cytokine storm" that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNß directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNß reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNß/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Coronavirus/metabolism , Diabetes Mellitus, Type 2/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Inflammation Mediators/metabolism , Inflammation/virology , Macrophages/metabolism , Animals , COVID-19/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Cytokine Release Syndrome , Cytokines/metabolism , Diabetes Mellitus, Type 2/genetics , Female , Histone-Lysine N-Methyltransferase/genetics , Humans , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Signal Transduction
8.
J Clin Tuberc Other Mycobact Dis ; 24: 100258, 2021 Aug.
Article En | MEDLINE | ID: mdl-34307905

OBJECTIVE: There is a clear need for improved biomarkers to diagnose HIV/TB coinfection. Although numerous tests can identify the existence of both of these microbes within the host, a parallel assessment of the host response to HIV/TB coinfection may prove as useful confirmation in cases where microbiological tests are inconclusive. To this end we assessed the levels of Notch ligands found in serum samples of patients with TB, HIV or HIV/TB coinfection. The Notch system is involved in almost every stage of development, including the maturation of the immune response. Upon exposure to a pathogen, the innate immune system will increase expression of Notch ligands Delta-like 1 and Delta-like 4. Previous research has demonstrated that Notch ligand expression is increased on monocytes from patients diagnosed with tuberculosis. We hypothesized that if Notch ligands were present in the peripheral blood of individuals diagnosed with TB, they may serve as a novel marker for infection.Design: Serum samples from patients with HIV, TB or HIV/TB coinfection were compared to serum from uninfected individuals to determine levels of DLL1 and DLL4 in a case controlled study. METHODS: DLL1 and DLL4 were measured by ELISA. Linear regression with post tests were used to determine if levels of DLL1 and DLL4 were increased in individuals with HIV/TB coinfection as compared to individuals infected with either HIV or TB or healthy controls. RESULTS: Delta-like 1 and Delta-like 4 were significantly increased in the serum of patients with HIV and HIV/ M. tuberculosis coinfection compared to other groups. CONCLUSIONS: Assessment of Notch ligands in peripheral blood may enhance the diagnosis of individuals with active TB that are co-infected with HIV. The study will also need to be validated in in a larger cohort.

9.
J Exp Med ; 218(6)2021 06 07.
Article En | MEDLINE | ID: mdl-33779682

Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-ß regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB-mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II-induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.


Aortic Aneurysm, Abdominal/metabolism , Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Macrophages/metabolism , Angiotensin II/pharmacology , Animals , Disease Models, Animal , Inflammation/metabolism , Inflammation Mediators/metabolism , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
10.
J Biol Chem ; 296: 100235, 2021.
Article En | MEDLINE | ID: mdl-33376138

Epigenetic mechanisms that alter heritable gene expression and chromatin structure play an essential role in many biological processes, including liver function. Human MOF (males absent on the first) is a histone acetyltransferase that is globally downregulated in human steatohepatitis. However, the function of MOF in the liver remains unclear. Here, we report that MOF plays an essential role in adult liver. Genetic deletion of Mof by Mx1-Cre in the liver leads to acute liver injury, with increase of lipid deposition and fibrosis akin to human steatohepatitis. Surprisingly, hepatocyte-specific Mof deletion had no overt liver abnormality. Using the in vitro coculturing experiment, we show that Mof deletion-induced liver injury requires coordinated changes and reciprocal signaling between hepatocytes and Kupffer cells, which enables feedforward regulation to augment inflammation and apoptotic responses. At the molecular level, Mof deletion induced characteristic changes in metabolic gene programs, which bore noticeable similarity to the molecular signature of human steatohepatitis. Simultaneous deletion of Mof in both hepatocytes and macrophages results in enhanced expression of inflammatory genes and NO signaling in vitro. These changes, in turn, lead to apoptosis of hepatocytes and lipotoxicity. Our work highlights the importance of histone acetyltransferase MOF in maintaining metabolic liver homeostasis and sheds light on the epigenetic dysregulation in liver pathogenesis.


Histone Acetyltransferases/genetics , Inflammation/metabolism , Liver Diseases/genetics , Liver/injuries , Nitric Oxide/genetics , Apoptosis/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Deletion , Gene Expression Regulation/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Histone Acetyltransferases/chemistry , Humans , Inflammation/genetics , Inflammation/pathology , Lipids/adverse effects , Lipids/genetics , Liver/metabolism , Liver/pathology , Liver Diseases/metabolism , Liver Diseases/pathology , Macrophages/metabolism , Macrophages/pathology , Nitric Oxide/metabolism , Signal Transduction/genetics
11.
JCI Insight ; 5(17)2020 09 03.
Article En | MEDLINE | ID: mdl-32879137

Macrophages are a primary immune cell involved in inflammation, and their cell plasticity allows for transition from an inflammatory to a reparative phenotype and is critical for normal tissue repair following injury. Evidence suggests that epigenetic alterations play a critical role in establishing macrophage phenotype and function during normal and pathologic wound repair. Here, we find in human and murine wound macrophages that cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) is elevated in diabetes and regulates downstream macrophage-mediated inflammation and host defense. Using single-cell RNA sequencing of human wound tissue, we identify increased NF-κB-mediated inflammation in diabetic wounds and show increased COX-2/PGE2 in diabetic macrophages. Further, we identify that COX-2/PGE2 production in wound macrophages requires epigenetic regulation of 2 key enzymes in the cytosolic phospholipase A2/COX-2/PGE2 (cPLA2/COX-2/PGE2) pathway. We demonstrate that TGF-ß-induced miRNA29b increases COX-2/PGE2 production via inhibition of DNA methyltransferase 3b-mediated hypermethylation of the Cox-2 promoter. Further, we find mixed-lineage leukemia 1 (MLL1) upregulates cPLA2 expression and drives COX-2/PGE2. Inhibition of the COX-2/PGE2 pathway genetically (Cox2fl/fl Lyz2Cre+) or with a macrophage-specific nanotherapy targeting COX-2 in tissue macrophages reverses the inflammatory macrophage phenotype and improves diabetic tissue repair. Our results indicate the epigenetically regulated PGE2 pathway controls wound macrophage function, and cell-targeted manipulation of this pathway is feasible to improve diabetic wound repair.


Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus/physiopathology , Dinoprostone/pharmacology , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Inflammation/prevention & control , Macrophages/drug effects , Wound Healing , Aged , Animals , Cyclooxygenase 2/metabolism , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Oxytocics/pharmacology , Phenotype , Pseudomonas aeruginosa/drug effects , Signal Transduction
12.
Tuberculosis (Edinb) ; 124: 101980, 2020 09.
Article En | MEDLINE | ID: mdl-32801053

Tuberculosis (TB) is the leading cause of mortality among infectious diseases worldwide. The study of molecular targets for therapy and diagnosis suggested that Notch signaling is an important pathway for the maintenance of the immune response during Mycobacterium tuberculosis (Mtb) infection. We evaluated the participation of the Notch pathway in the modulation of immune response during Mtb infection, and observed that patients with active TB had increased DLL4 expression in intermediate and non-classic monocytes. Further, patients with moderate and advanced lung injury have higher Notch1 expression in CD4+ T cells when compared to patients with a minimal lung injury. When we considered the severity of disease in active TB patients, the expression of the DLL4 in intermediate monocytes and the expression of Notch1 in CD4+ T cells are positively correlated with the degree of lung injury. In vitro, PBMCs treated with the Notch pharmacological inhibitor reduced the production of IL-17A and IL-2, whereas anti-hDLL4 treatment promoted a significant increase in TNF-α and phagocytosis. We suggest that Notch1 and DLL4 are associated with immune response activation in human tuberculosis, and can be a novel target to be exploited in the future in the searching of biomarkers.


Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/metabolism , Calcium-Binding Proteins/metabolism , Lung/metabolism , Mycobacterium tuberculosis/immunology , Receptor, Notch1/metabolism , Tuberculosis, Pulmonary/metabolism , Adult , Biomarkers/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/microbiology , Case-Control Studies , Cells, Cultured , Cytokines/metabolism , Disease Progression , Female , Host-Pathogen Interactions , Humans , Lung/immunology , Lung/microbiology , Male , Middle Aged , Phagocytosis , Severity of Illness Index , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Young Adult
13.
Eur J Immunol ; 50(12): 1929-1940, 2020 12.
Article En | MEDLINE | ID: mdl-32662520

Chronic macrophage inflammation is a hallmark of type 2 diabetes (T2D) and linked to the development of secondary diabetic complications. T2D is characterized by excess concentrations of saturated fatty acids (SFA) that activate innate immune inflammatory responses, however, mechanism(s) by which SFAs control inflammation is unknown. Using monocyte-macrophages isolated from human blood and murine models, we demonstrate that palmitate (C16:0), the most abundant circulating SFA in T2D, increases expression of the histone demethylase, Jmjd3. Upregulation of Jmjd3 results in removal of the repressive histone methylation (H3K27me3) mark on NFκB-mediated inflammatory gene promoters driving macrophage-mediated inflammation. We identify that the effects of palmitate are fatty acid specific, as laurate (C12:0) does not regulate Jmjd3 and the associated inflammatory profile. Further, palmitate-induced Jmjd3 expression is controlled via TLR4/MyD88-dependent signaling mechanism, where genetic depletion of TLR4 (Tlr4-/- ) or MyD88 (MyD88-/- ) negated the palmitate-induced changes in Jmjd3 and downstream NFκB-induced inflammation. Pharmacological inhibition of Jmjd3 using a small molecule inhibitor (GSK-J4) reduced macrophage inflammation and improved diabetic wound healing. Together, we conclude that palmitate contributes to the chronic Jmjd3-mediated activation of macrophages in diabetic peripheral tissue and a histone demethylase inhibitor-based therapy may represent a novel treatment for nonhealing diabetic wounds.


Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Macrophages/metabolism , Palmitates/metabolism , Toll-Like Receptor 4/metabolism , Wound Healing/physiology , Animals , Diabetes Mellitus, Type 2 , Humans , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Up-Regulation/physiology
14.
J Immunol ; 204(9): 2503-2513, 2020 05 01.
Article En | MEDLINE | ID: mdl-32205424

Macrophages are critical for the initiation and resolution of the inflammatory phase of wound healing. In diabetes, macrophages display a prolonged inflammatory phenotype preventing tissue repair. TLRs, particularly TLR4, have been shown to regulate myeloid-mediated inflammation in wounds. We examined macrophages isolated from wounds of patients afflicted with diabetes and healthy controls as well as a murine diabetic model demonstrating dynamic expression of TLR4 results in altered metabolic pathways in diabetic macrophages. Further, using a myeloid-specific mixed-lineage leukemia 1 (MLL1) knockout (Mll1f/fLyz2Cre+ ), we determined that MLL1 drives Tlr4 expression in diabetic macrophages by regulating levels of histone H3 lysine 4 trimethylation on the Tlr4 promoter. Mechanistically, MLL1-mediated epigenetic alterations influence diabetic macrophage responsiveness to TLR4 stimulation and inhibit tissue repair. Pharmacological inhibition of the TLR4 pathway using a small molecule inhibitor (TAK-242) as well as genetic depletion of either Tlr4 (Tlr4-/- ) or myeloid-specific Tlr4 (Tlr4f/fLyz2Cre+) resulted in improved diabetic wound healing. These results define an important role for MLL1-mediated epigenetic regulation of TLR4 in pathologic diabetic wound repair and suggest a target for therapeutic manipulation.


Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Epigenesis, Genetic/genetics , Macrophages/physiology , Toll-Like Receptor 4/genetics , Wound Healing/genetics , Aged , Animals , Epigenesis, Genetic/immunology , Female , Histones/genetics , Histones/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/immunology , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/immunology , Toll-Like Receptor 4/immunology , Wound Healing/immunology
15.
JCI Insight ; 5(5)2020 03 12.
Article En | MEDLINE | ID: mdl-32069267

A critical component of wound healing is the transition from the inflammatory phase to the proliferation phase to initiate healing and remodeling of the wound. Macrophages are critical for the initiation and resolution of the inflammatory phase during wound repair. In diabetes, macrophages display a sustained inflammatory phenotype in late wound healing characterized by elevated production of inflammatory cytokines, such as TNF-α. Previous studies have shown that an altered epigenetic program directs diabetic macrophages toward a proinflammatory phenotype, contributing to a sustained inflammatory phase. Males absent on the first (MOF) is a histone acetyltransferase (HAT) that has been shown be a coactivator of TNF-α signaling and promote NF-κB-mediated gene transcription in prostate cancer cell lines. Based on MOF's role in TNF-α/NF-κB-mediated gene expression, we hypothesized that MOF influences macrophage-mediated inflammation during wound repair. We used myeloid-specific Mof-knockout (Lyz2Cre Moffl/fl) and diet-induced obese (DIO) mice to determine the function of MOF in diabetic wound healing. MOF-deficient mice exhibited reduced inflammatory cytokine gene expression. Furthermore, we found that wound macrophages from DIO mice had elevated MOF levels and higher levels of acetylated histone H4K16, MOF's primary substrate of HAT activity, on the promoters of inflammatory genes. We further identified that MOF expression could be stimulated by TNF-α and that treatment with etanercept, an FDA-approved TNF-α inhibitor, reduced MOF levels and improved wound healing in DIO mice. This report is the first to our knowledge to define an important role for MOF in regulating macrophage-mediated inflammation in wound repair and identifies TNF-α inhibition as a potential therapy for the treatment of chronic inflammation in diabetic wounds.


Diabetes Mellitus, Experimental/immunology , Histone Acetyltransferases/metabolism , Macrophages/immunology , Tumor Necrosis Factor-alpha/physiology , Animals , Diabetes Mellitus, Experimental/physiopathology , Etanercept/pharmacology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Wound Healing/physiology
16.
Microbes Infect ; 22(8): 312-321, 2020 09.
Article En | MEDLINE | ID: mdl-31958572

Pneumococcal conjugate vaccination (PCV) may prevent influenza-related pneumonia, including Streptococcus pneumoniae pneumonia. To investigate PCV efficacy against secondary pneumococcal pneumonia following influenza, PCV was administered intramuscularly 2 and 5 weeks before S. pneumoniae serotype-3 colonization of murine nasopharynges followed by intranasal challenge with a sublethal dose of influenza A virus. Bacterial and viral loads, including innate immune responses were compared across conditions. PCV vaccination improved the survival of mice with secondary pneumococcal pneumonia and significantly reduced the pulmonary bacterial burden. Increased monocyte/macrophage influx into the lungs, alleviated loss of alveolar macrophages and decreased neutrophil influx into the lungs occurred in PCV-treated mice irrespective of pneumococcal colonization. Higher monocyte chemoattractant protein 1 levels and lower levels of CXCL1, interferon-γ, interleukin-17A, and IL-10, were detected in PCV-treated mice. Additionally, PCV treatment activated the macrophage intracellular killing of S. pneumoniae. Collectively, PCV potentially modulates the host's innate immunity and specific antibodies induction. Macrophage-related innate immunity should be further explored to elucidate the efficacy and mechanisms of PCV versus influenza-related life-threatening diseases.


Coinfection/immunology , Immunity, Innate , Macrophages/immunology , Orthomyxoviridae Infections/immunology , Pneumococcal Vaccines/immunology , Pneumonia, Pneumococcal/immunology , Animals , Antibodies, Bacterial/blood , B7-2 Antigen/metabolism , Bacterial Load , Coinfection/microbiology , Coinfection/mortality , Coinfection/virology , Cytokines/metabolism , Disease Models, Animal , Influenza A virus , Lung/immunology , Lung/microbiology , Lung/virology , Macrophages/microbiology , Mice , Neutrophils/immunology , Orthomyxoviridae Infections/microbiology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Phagocytosis , Pneumococcal Vaccines/administration & dosage , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/mortality , Pneumonia, Pneumococcal/virology , Streptococcus pneumoniae , Survival Rate , Vaccination , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
17.
Thromb Haemost ; 120(2): 289-299, 2020 Feb.
Article En | MEDLINE | ID: mdl-31887775

Venous thrombosis (VT) resolution is a complex process, resembling sterile wound healing. Infiltrating blood-derived monocyte/macrophages (Mo/MΦs) are essential for the regulation of inflammation in tissue repair. These cells differentiate into inflammatory (CD11b+Ly6CHi) or proreparative (CD11b+Ly6CLo) subtypes. Previous studies have shown that infiltrating Mo/MΦs are important for VT resolution, but the precise roles of different Mo/MΦs subsets are not well understood. Utilizing murine models of stasis and stenosis inferior vena cava thrombosis in concert with a Mo/MΦ depletion model (CD11b-diphtheria toxin receptor [DTR]-expressing mice), we examined the effect of Mo/MΦ depletion on thrombogenesis and VT resolution. In the setting of an 80 to 90% reduction in circulating CD11b+Mo/MΦs, we demonstrated that Mo/MΦs are not essential for thrombogenesis, with no difference in thrombus size, neutrophil recruitment, or neutrophil extracellular traps found. Conversely, CD11b+Mo/MΦ are essential for VT resolution. Diphtheria toxoid (DTx)-mediated depletion after thrombus creation depleted primarily CD11b+Ly6CLo Mo/MΦs and resulted in larger thrombi. DTx-mediated depletion did not alter CD11b+Ly6CHi Mo/MΦ recruitment, suggesting a protective effect of CD11b+Ly6CLo Mo/MΦs in VT resolution. Confirmatory Mo/MΦ depletion with clodronate lysosomes showed a similar phenotype, with failure to resolve VT. Adoptive transfer of CD11b+Ly6CLo Mo/MΦs into Mo/MΦ-depleted mice reversed the phenotype, restoring normal thrombus resolution. These findings suggest that CD11b+Ly6CLo Mo/MΦs are essential for normal VT resolution, consistent with the known proreparative function of this subset, and that further study of Mo/MΦ subsets may identify targets for immunomodulation to accelerate and improve thrombosis resolution.


Lysosomes/metabolism , Macrophages/cytology , Monocytes/cytology , Thrombosis/blood , Venous Thrombosis/blood , Adoptive Transfer , Animals , Antigens, Ly/metabolism , CD11 Antigens/metabolism , Cell Separation , Diphtheria Toxin/pharmacology , Enzyme-Linked Immunosorbent Assay , Inflammation , Leukocytes , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Phenotype
18.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L200-L211, 2020 01 01.
Article En | MEDLINE | ID: mdl-31747308

Stem cell factor (SCF) and its receptor c-kit have been implicated in inflammation, tissue remodeling, and fibrosis. Ingenuity Integrated Pathway Analysis of gene expression array data sets showed an upregulation of SCF transcripts in idiopathic pulmonary fibrosis (IPF) lung biopsies compared with tissue from nonfibrotic lungs that are further increased in rapid progressive disease. SCF248, a cleavable isoform of SCF, was abundantly and preferentially expressed in human lung fibroblasts and fibrotic mouse lungs relative to the SCF220 isoform. In fibroblast-mast cell coculture studies, blockade of SCF248 using a novel isoform-specific anti-SCF248 monoclonal antibody (anti-SCF248), attenuated the expression of COL1A1, COL3A1, and FN1 transcripts in cocultured IPF but not normal lung fibroblasts. Administration of anti-SCF248 on days 8 and 12 after bleomycin instillation in mice significantly reduced fibrotic lung remodeling and col1al, fn1, acta2, tgfb, and ccl2 transcript expression. In addition, bleomycin increased numbers of c-kit+ mast cells, eosinophils, and ILC2 in lungs of mice, whereas they were not significantly increased in anti-SCF248-treated animals. Finally, mesenchymal cell-specific deletion of SCF significantly attenuated bleomycin-mediated lung fibrosis and associated fibrotic gene expression. Collectively, these data demonstrate that SCF is upregulated in diseased IPF lungs and blocking SCF248 isoform significantly ameliorates fibrotic lung remodeling in vivo suggesting that it may be a therapeutic target for fibrotic lung diseases.


Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Protein Isoforms/metabolism , Stem Cell Factor/metabolism , Animals , Bleomycin/pharmacology , Cell Count/methods , Cells, Cultured , Coculture Techniques/methods , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/drug effects , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects , Up-Regulation/drug effects
19.
Front Immunol ; 10: 2148, 2019.
Article En | MEDLINE | ID: mdl-31708911

Inflammation after trauma is both critical to normal wound healing and may be highly detrimental when prolonged or unchecked with the potential to impair physiologic healing and promote de novo pathology. Mechanical strain after trauma is associated with impaired wound healing and increased inflammation. The exact mechanisms behind this are not fully elucidated. Neutrophil extracellular traps (NETs), a component of the neutrophil response to trauma, are implicated in a range of pro-inflammatory conditions. In the current study, we evaluated their role in linking movement and inflammation. We found that a link exists between the disruption and amplification of NETs which harbors the potential to regulate the wound's response to mechanical strain, while leaving the initial inflammatory signal necessary for physiologic wound healing intact.


Cell Movement/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Stress, Mechanical , Wounds and Injuries/immunology , Animals , Humans , Inflammation/immunology , Inflammation/pathology , Mice , Neutrophils/pathology , Wounds and Injuries/pathology
20.
Arterioscler Thromb Vasc Biol ; 39(11): 2353-2366, 2019 11.
Article En | MEDLINE | ID: mdl-31644352

OBJECTIVE: Sepsis represents an acute life-threatening disorder resulting from a dysregulated host response. For patients who survive sepsis, there remains long-term consequences, including impaired inflammation, as a result of profound immunosuppression. The mechanisms involved in this long-lasting deficient immune response are poorly defined. Approach and Results: Sepsis was induced using the murine model of cecal ligation and puncture. Following a full recovery period from sepsis physiology, mice were subjected to our wound healing model and wound macrophages (CD11b+, CD3-, CD19-, Ly6G-) were sorted. Post-sepsis mice demonstrated impaired wound healing and decreased reepithelization in comparison to controls. Further, post-sepsis bone marrow-derived macrophages and wound macrophages exhibited decreased expression of inflammatory cytokines vital for wound repair (IL [interleukin]-1ß, IL-12, and IL-23). To evaluate if decreased inflammatory gene expression was secondary to epigenetic modification, we conducted chromatin immunoprecipitation on post-sepsis bone marrow-derived macrophages and wound macrophages. This demonstrated decreased expression of Mll1, an epigenetic enzyme, and impaired histone 3 lysine 4 trimethylation (activation mark) at NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells)-binding sites on inflammatory gene promoters in bone marrow-derived macrophages and wound macrophages from postcecal ligation and puncture mice. Bone marrow transplantation studies demonstrated epigenetic modifications initiate in bone marrow progenitor/stem cells following sepsis resulting in lasting impairment in peripheral macrophage function. Importantly, human peripheral blood leukocytes from post-septic patients demonstrate a significant reduction in MLL1 compared with nonseptic controls. CONCLUSIONS: These data demonstrate that severe sepsis induces stable mixed-lineage leukemia 1-mediated epigenetic modifications in the bone marrow, which are passed to peripheral macrophages resulting in impaired macrophage function and deficient wound healing persisting long after sepsis recovery.


Epigenesis, Genetic , Inflammation/physiopathology , Macrophages/physiology , Sepsis/genetics , Sepsis/physiopathology , Wound Healing/physiology , Animals , Bone Marrow Cells/physiology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Immune Tolerance , Male , Mice, Inbred C57BL , Mice, Inbred Strains , Myeloid-Lymphoid Leukemia Protein/genetics , NF-kappa B/genetics , Promoter Regions, Genetic , Sepsis/metabolism
...