Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(8): 6438-6444, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363716

RESUMEN

Lead halide perovskite nanocrystals, such as CsPbBr3, exhibit efficient photoluminescence (PL) up-conversion, also referred to as anti-Stokes photoluminescence (ASPL). This is a phenomenon where irradiating nanocrystals up to 100 meV below gap results in higher energy band edge emission. Most surprising is that ASPL efficiencies approach unity and involve single-photon interactions with multiple phonons. This is unexpected given the statistically disfavored nature of multiple-phonon absorption. Here, we report and rationalize near-unity anti-Stokes photoluminescence efficiencies in CsPbBr3 nanocrystals and attribute them to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals. Moreover, the developed microscopic mechanism has immediate and important implications for applications of ASPL toward condensed phase optical refrigeration.

2.
Environ Sci Technol ; 58(2): 1312-1320, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38173246

RESUMEN

Sunlight irradiation is the predominant process for degrading plastics in the environment, but our current understanding of the degradation of smaller, submicron (<1000 nm) particles is limited due to prior analytical constraints. We used infrared photothermal heterodyne imaging (IR-PHI) to simultaneously analyze the chemical and morphological changes of single polystyrene (PS) particles (∼1000 nm) when exposed to ultraviolet (UV) irradiation (λ = 250-400 nm). Within 6 h of irradiation, infrared bands associated with the backbone of PS decreased, accompanied by a reduction in the particle size. Concurrently, the formation of several spectral features due to photooxidation was attributed to ketones, carboxylic acids, aldehydes, esters, and lactones. Spectral outcomes were used to present an updated reaction scheme for the photodegradation of PS. After 36 h, the average particle size was reduced to 478 ± 158 nm. The rates of size decrease and carbonyl band area increase were -24 ± 3.0 nm h-1 and 2.1 ± 0.6 cm-1 h-1, respectively. Using the size-related rate, we estimated that under peak terrestrial sunlight conditions, it would take less than 500 h for a 1000 nm PS particle to degrade to 1 nm.


Asunto(s)
Poliestirenos , Contaminantes Químicos del Agua , Fotólisis , Plásticos , Rayos Ultravioleta , Luz Solar
3.
ACS Nano ; 17(20): 20502-20511, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815981

RESUMEN

Lead-based, mixed-halide perovskites such as methylammonium lead iodide-bromide [MAPb(I1-xBrx)3] undergo anion photosegregation under illumination. This is observed as low-band-gap photoluminescence from photogenerated iodine-rich domains due to favorable band offsets that induce carrier funneling into them. Unfortunately, theoretical rationalizations of mixed-halide photosegregation are complicated by biases inherent in photoluminescence-based observations. Recent compositionally weighted X-ray diffraction (XRD) measurements now reveal broad distributions of photosegregated stoichiometries not captured by existing photosegregation models. To better bridge experiment and theory, we perform kinetic Monte Carlo (KMC) simulations of photosegregation within the context of a band-gap-based thermodynamic model, which has previously accounted for numerous experimental observations. Our KMC simulations are modified to consider high carrier density Fermi-Dirac statistics that result from carrier funneling and accumulation within photosegregated I-rich domains. Obtained KMC results reproduce broad terminal halide (xterminal) distributions seen experimentally and illustrate how they are characterized by a central, heavily I-enriched stoichiometry. I-rich domain "drifting" during photosegregation rationalizes the long photosegregation time scales seen experimentally with drifting simultaneously, producing a wake of variable stoichiometry I-rich inclusions that form the lion's share of stoichiometric heterogeneities seen in compositionally weighted XRD measurements. These simulations and accompanying rationalizations further reveal a general criterion for realizing favorable free energies to induce demixing. Central to the criterion is the statistical occupation of low gap inclusions in the parent alloy by excitations. The resulting model thus provides a general framework for conceptualizing mixed-halide perovskite light and temperature sensitivities mediated by photocarriers.

4.
J Am Chem Soc ; 145(11): 6362-6370, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36881007

RESUMEN

Key features of syntheses, involving the quaternary ammonium passivation of CsPbBr3 nanocrystals (NCs), include stable, reproducible, and large (often near-unity) emission quantum yields (QYs). The archetypical example involves didodecyl dimethyl ammonium (DDDMA+)-passivated CsPbBr3 NCs where robust QYs stem from interactions between DDDMA+ and NC surfaces. Despite widespread adoption of this synthesis, specific ligand-NC surface interactions responsible for large DDDMA+-passivated NC QYs have not been fully established. Multidimensional nuclear magnetic resonance experiments now reveal a new DDDMA+-NC surface interaction, beyond established "tightly bound" DDDMA+ interactions, which strongly affects observed emission QYs. Depending upon the existence of this new DDDMA+ coordination, NC QYs vary broadly between 60 and 85%. More importantly, these measurements reveal surface passivation through unexpected didodecyl ammonium (DDA+) that works in concert with DDDMA+ to produce near-unity (i.e., >90%) QYs.

5.
Dyes Pigm ; 2102023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36643871

RESUMEN

Squaraine Figure Eight (SF8) dyes are a unique class of deep-red fluorescent dyes with self-threaded molecular architecture that provides structural rigidity while simultaneously encapsulating and protecting the emissive fluorochrome. Previous cell microscopy and bulk phase studies of SF8 dyes indicated order of magnitude enhancements in photostability over conventional pentamethine cyanine dyes such as Cy5. Studies conducted at the single molecule level now reveal that these ensemble level enhancements carry over to the single molecule level in terms of enhanced emission quantum yields, longer times to photobleaching, and enhanced total photon yields. When compared to Cy5, the SF8-based dye SF8(D4)2 possesses a three-fold larger single molecule emission quantum yield, exhibits order of magnitude longer average times before photobleaching, and exhibits twenty times larger photon yields. Additional features such as water solubility, fluorochrome encapsulation to protect it against nucleophilic attack, and selective biomarker targeting capability make SF8-based dyes promising candidates for biological labeling and microscopy applications and single molecule tracking.

6.
J Am Acad Child Adolesc Psychiatry ; 62(4): 403-414, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36526161

RESUMEN

OBJECTIVE: Cognitive-behavioral therapy (CBT) is considered a first-line treatment for obsessive-compulsive disorder (OCD) in pediatric and adult populations. Nevertheless, some patients show partial or null response. The identification of predictors of CBT response may improve clinical management of patients with OCD. Here, we aimed to identify structural magnetic resonance imaging (MRI) predictors of CBT response in 2 large series of children and adults with OCD from the worldwide ENIGMA-OCD consortium. METHOD: Data from 16 datasets from 13 international sites were included in the study. We assessed which variations in baseline cortical thickness, cortical surface area, and subcortical volume predicted response to CBT (percentage of baseline to post-treatment symptom reduction) in 2 samples totaling 168 children and adolescents (age range 5-17.5 years) and 318 adult patients (age range 18-63 years) with OCD. Mixed linear models with random intercept were used to account for potential cross-site differences in imaging values. RESULTS: Significant results were observed exclusively in the pediatric sample. Right prefrontal cortex thickness was positively associated with the percentage of CBT response. In a post hoc analysis, we observed that the specific changes accounting for this relationship were a higher thickness of the frontal pole and the rostral middle frontal gyrus. We observed no significant effects of age, sex, or medication on our findings. CONCLUSION: Higher cortical thickness in specific right prefrontal cortex regions may be important for CBT response in children with OCD. Our findings suggest that the right prefrontal cortex plays a relevant role in the mechanisms of action of CBT in children.


Asunto(s)
Terapia Cognitivo-Conductual , Trastorno Obsesivo Compulsivo , Adulto , Adolescente , Humanos , Niño , Preescolar , Corteza Prefrontal/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/terapia , Imagen por Resonancia Magnética , Lóbulo Frontal , Terapia Cognitivo-Conductual/métodos
7.
ACS Energy Lett ; 7(12): 4242-4247, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36531145

RESUMEN

Mixing bromine and iodine within lead halide perovskites is a common strategy to tune their optical properties. This comes at the cost of instability, as illumination induces halide segregation and degrades device performances. Hence, understanding the behavior of mixed-halide perovskites is crucial for applications. In 3D perovskites such as MAPb(Br x I1-x )3 (MA = methylammonium), all of the halide crystallographic sites are similar, and the consensus is that bromine and iodine are homogeneously distributed prior to illumination. By analogy, it is often assumed that Ruddlesden-Popper layered perovskites such as (BA)2MAPb2(Br x I1-x )7 (BA = butylammonium) behave alike. However, these materials possess a much wider variety of halide sites featuring diverse coordination environments, which might be preferentially occupied by either bromine or iodine. This leaves an open question: are mixed-halide Ruddlesden-Popper perovskites really mixed? By combining powder and single-crystal diffraction experiments, we demonstrate that this is not the case: bromine and iodine in RP perovskites preferentially occupy different sites, regardless of the crystallization speed.

8.
ACS Nano ; 16(12): 21636-21644, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36468911

RESUMEN

Although broad consensus exists that photoirradiation of mixed-halide lead perovskites leads to anion segregation, no model today fully rationalizes all aspects of this near ubiquitous phenomenon. Here, we quantitatively compare experimental, CsPb(I0.5Br0.5)3 nanocrystal (NC) terminal anion photosegregation stoichiometries and excitation intensity thresholds to a band gap-based, thermodynamic model of mixed-halide perovskite photosegregation. Mixed-halide NCs offer strict tests of theory given physical sizes, which dictate local photogenerated carrier densities. We observe that mixed-anion perovskite NCs exhibit significant robustness to photosegregation, with photosegregation propensity decreasing with decreasing NC size. Observed size- and excitation intensity-dependent photosegregation data agree with model predicted size- and excitation intensity-dependent terminal halide stoichiometries. Established correspondence between experiment and theory, in turn, suggests that mixed-halide perovskite photostabilities can be predicted a priori using local gradients of (empirical) Vegard's law expressions of composition-dependent band gaps.

9.
J Chem Phys ; 155(21): 214202, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879676

RESUMEN

Infrared photothermal heterodyne imaging (IR-PHI) is an all-optical table top approach that enables super-resolution mid-infrared microscopy and spectroscopy. The underlying principle behind IR-PHI is the detection of photothermal changes to specimens induced by their absorption of infrared radiation. Because detection of resulting refractive index and scattering cross section changes is done using a visible (probe) laser, IR-PHI exhibits a spatial resolution of ∼300 nm. This is significantly below the mid-infrared diffraction limit and is unlike conventional infrared absorption microscopy where spatial resolution is of order ∼5µm. Despite having achieved mid-infrared super-resolution, IR-PHI's spatial resolution is ultimately limited by the visible probe laser's diffraction limit. This hinders immediate application to studying samples residing in spatially congested environments. To circumvent this, we demonstrate further enhancements to IR-PHI's spatial resolution using a deep learning network that addresses the Abbe diffraction limit as well as background artifacts, introduced by experimental raster scanning. What results is a twofold improvement in feature resolution from 300 to ∼150 nm.


Asunto(s)
Rayos Infrarrojos , Microscopía , Rayos Láser
10.
Environ Sci Technol ; 55(23): 15891-15899, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34747612

RESUMEN

A key challenge for addressing micro- and nanoplastics (MNPs) in the environment is being able to characterize their chemical properties, morphologies, and quantities in complex matrices. Current techniques, such as Fourier transform infrared spectroscopy, provide these broad characterizations but are unsuitable for studying MNPs in spectrally congested or complex chemical environments. Here, we introduce a new, super-resolution infrared absorption technique to characterize MNPs, called infrared photothermal heterodyne imaging (IR-PHI). IR-PHI has a spatial resolution of ∼300 nm and can determine the chemical identity, morphology, and quantity of MNPs in a single analysis with high sensitivity. Specimens are supported on CaF2 coverslips under ambient conditions from where we (1) quantify MNPs from nylon tea bags after steeping in ultrapure water at 25 and 95 °C, (2) identify MNP chemical or morphological changes after steeping at 95 °C, and (3) chemically identify MNPs in sieved road dust. In all cases, no special sample preparation was required. MNPs released from nylon tea bags at 25 °C were fiber-like and had characteristic IR frequencies corresponding to thermally extruded nylon. At 95 °C, degradation of the nylon chemical structure was observed via the disappearance of amide group IR frequencies, indicating chain scission of the nylon backbone. This degradation was also observed through morphological changes, where MNPs altered shape from fiber-like to quasi-spherical. In road dust, IR-PHI analysis reveals the presence of numerous aggregate and single-particle (<3 µm) MNPs composed of rubber and nylon.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Polvo , Nylons , Plásticos , Contaminantes Químicos del Agua/análisis
11.
J Phys Chem Lett ; 12(16): 4024-4031, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33880921

RESUMEN

Accurate measurements of semiconductor nanocrystal (NC) emission quantum yields (QYs) are critical to condensed phase optical refrigeration. Of particular relevance to measuring NC QYs is a longstanding debate as to whether an excitation energy-dependent (EED) QY exists. Various reports indicate existence of NC EED QYs, suggesting that the phenomenon is linked to specific ensemble properties. We therefore investigate here the existence of EED QYs in two NC systems (CsPbBr3 and CdSe) that are possible candidates for use in optical refrigeration. The influence of NC size, size-distribution, surface ligand, and as-made emission QYs are investigated. Existence of EED QYs is assessed using two approaches (an absolute approach using an integrating sphere and a relative approach involving excitation spectroscopy). Altogether, our results show no evidence of EED QYs across samples. This suggests that parameters beyond those mentioned above are responsible for observations of NC EED QYs.

12.
J Phys Chem Lett ; 12(10): 2615-2621, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33689371

RESUMEN

Hole trapping at iodine (I) sites in MAPbBr1.5I1.5 mixed halide perovskites (MHP) is responsible for iodine migration and its eventual expulsion into solution. We have now modulated the photoinduced iodine expulsion in MHP through an externally applied electrochemical bias. At positive potentials, electron extraction at TiO2/MHP interfaces becomes efficient, leading to hole buildup within MHP films. This improved charge separation, in turn, favors iodine migration as evident from the increased apparent rate constant of iodine expulsion (kexpulsion = 0.0030 s-1). Conversely, at negative potentials (-0.3 V vs Ag/AgCl) electron-hole recombination is facilitated within MHP, slowing down iodine expulsion by an order of magnitude (kexpulsion = 0.00018 s-1). The tuning of the EFermi level through external bias modulates electron extraction at the TiO2/MHP interface and indirectly controls the buildup of holes, ultimately inducing iodine migration/expulsion. Suppressing iodine migration in perovskite solar cells is important for attaining greater stability since they operate under internal electrical bias.

13.
Acc Chem Res ; 54(3): 520-531, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33475338

RESUMEN

ConspectusThe optical and electronic properties of metal halide perovskites provide insight into the operation of solar cells as well as their long-term operational stability. Halide mobility in perovskite films is an important factor influencing solar cell performance. One can visualize halide ion migration through halide exchange between two nanocrystal suspensions or between physically paired films of two different metal halide perovskites. The ability to tune band gap by varying halide ratios (Cl:Br or Br:I) allows the synthesis of mixed halide perovskites with tailored absorption and emission across the entire visible spectrum. Interestingly, mixed halide (e.g., MAPb(Br0.5I0.5)3) films undergo phase segregation to form Br-rich and I-rich sites under steady state illumination. Upon halting illumination, segregated phases mix to restore original mixed halide compositions. Introducing multiple cations (Cs, formamidinium) at the A site or alloying with Cl greatly suppresses halide mobilities. Long-term irradiation of MAPb(Br0.5I0.5)3 films also cause expulsion of iodide leaving behind Br-rich phases. Hole trapping at I-rich sites in MAPb(Br0.5I0.5)3 is considered to be an important step in inducing halide mobility in photoirradiated films. This Account focuses on halide ion migration in nanocrystals and nanostructured films driven by entropy of mixing in dark and phase segregation under light irradiation.

14.
Nat Mater ; 20(1): 6-7, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33077950
15.
Transl Psychiatry ; 10(1): 342, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033241

RESUMEN

No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker.


Asunto(s)
Trastorno Obsesivo Compulsivo , Biomarcadores , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/tratamiento farmacológico
16.
Nano Lett ; 20(10): 7382-7388, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32969667

RESUMEN

Recent experiments by Rainò et al. ( Nature 2018, 563, 671-675) have documented cooperative emission from CsPbBr3 nanocrystal superlattices, exhibiting the hallmarks of low-temperature superradiance. In particular, the optical response is coherent and the radiative decay rate is increased by a factor of 3, relative to that of individual nanocrystals. However, the increase is 6 orders of magnitude smaller than what is theoretically expected from the superradiance of large assemblies, consisting of 106-108 interacting nanocrystals. Here, we develop a theoretical model of superradiance for such systems and show that thermal decoherence is largely responsible for the drastic reduction of the radiative decay rate in nanocrystal superlattices. Our theoretical approach explains the experimental results ( Nature 2018, 563, 671-675), provides insight into the design of small nanocrystal superlattices, and shows a 4 orders of magnitude enhancement in superradiant response. These quantitative predictions pave the path toward observing superradiance at higher temperatures.

17.
Trials ; 21(1): 814, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993775

RESUMEN

BACKGROUND: One aim of an autism spectrum disorder (ASD) diagnosis is to obtain special support for the disorder, though this does not guarantee practical support. We developed a psychoeducational program using cognitive-behavioral therapy (CBT) and Aware and Care for my Autistic Traits (ACAT) for Japanese adolescents with high-functioning ASD and their parents. METHODS: This multisite study is a randomized controlled trial. In total, 24 participants will be assigned to the ACAT group and 24 to the treatment-as-usual (TAU) group. The ACAT group will receive a weekly 100-min session for 6 weeks, regular medical care, and one follow-up session. In this ongoing clinical trial, we will compare the scores of the measures recorded in the pre- and post-intervention stages between the ACAT and TAU groups. A total of 41 patients out of a target of 48 have participated in the trial to date. The primary outcome measure is the Autism Knowledge Questionnaire. Secondary outcome measures include Barriers to Access to Care Evaluation 3rd Edition, the Strengths and Difficulties Questionnaire, the Vineland Adaptive Behavior Scales second edition, the Parenting Resilience Elements Questionnaire, the General Health Questionnaire 12, and the Depression Self-Rating Scale for Children assessments, as well as an electroencephalographic recording. DISCUSSION: It is expected that participants in the ACAT group will significantly increase their self-understanding and awareness of ASD symptoms compared to those in the TAU group. Additionally, the ACAT group is expected to exhibit improved social adaptation and mental health if children and parents are able to better understand the ASD characteristics through sessions. This intervention will contribute to the establishment of an effective evidence-based treatment strategy for adolescents with ASD. TRIAL REGISTRATION: UMIN Register 000029851 . Registered on January 06, 2018.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Terapia Cognitivo-Conductual , Adolescente , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/terapia , Niño , Cognición , Terapia Familiar , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
18.
J Phys Chem Lett ; 11(13): 4937-4944, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32482071

RESUMEN

Size-dependent photoluminescence Stokes shifts (ΔEs) universally exist in CsPbX3 (X = Cl-, Br-, or I-) perovskite nanocrystals (NCs). ΔEs values, which range from ∼15 to 100 meV for NCs with average edge lengths (l) from approximately 13 to 3 nm, are halide-dependent such that ΔEs(CsPbI3) > ΔEs(CsPbBr3) ≳ ΔEs(CsPbCl3). Observed size-dependent Stokes shifts are not artifacts of ensemble size distributions as demonstrated through measurements of single CsPbBr3 NC Stokes shifts (⟨ΔEs⟩ = 42 ± 5 meV), which are in near quantitative agreement with associated ensemble (l = 6.8 ± 0.8 nm) ΔEs values (ΔEs ≈ 50 meV). Transient differential absorption measurements additionally illustrate no significant spectral dynamics on the picosecond time scale that would contribute to ΔEs. This excludes polaron formation as being responsible for ΔEs. Altogether, the results point to an origin for ΔEs, intrinsic to the size-dependent electronic properties of individual perovskite NCs.

19.
Phys Chem Chem Phys ; 22(8): 4313-4325, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32064480

RESUMEN

This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared "fingerprint" region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail. Its practical implementation in terms of equipment used, optical geometries employed, and underlying contrast mechanism are described. Milestones where IR-PHI has led to notable advances in bioscience and materials science are summarized. The perspective concludes with a future outlook for robust and readily accessible high spatial resolution, mid-infrared imaging and spectroscopy techniques.

20.
Proc Natl Acad Sci U S A ; 117(5): 2288-2293, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964821

RESUMEN

Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm-1 for 2.5-3.9-µm-long NWs reveal a series of resonances due to the Fabry-Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to the m = 3 and m = 4 Fabry-Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry-Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...