Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(4): 574-592.e10, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38086370

RESUMEN

The human amygdala paralaminar nucleus (PL) contains many immature excitatory neurons that undergo prolonged maturation from birth to adulthood. We describe a previously unidentified homologous PL region in mice that contains immature excitatory neurons and has previously been considered part of the amygdala intercalated cell clusters or ventral endopiriform cortex. Mouse PL neurons are born embryonically, not from postnatal neurogenesis, despite a subset retaining immature molecular and morphological features in adults. During juvenile-adolescent ages (P21-P35), the majority of PL neurons undergo molecular, structural, and physiological maturation, and a subset of excitatory PL neurons migrate into the adjacent endopiriform cortex. Alongside these changes, PL neurons develop responses to aversive and appetitive olfactory stimuli. The presence of this homologous region in both humans and mice points to the significance of this conserved mechanism of neuronal maturation and migration during adolescence, a key time period for amygdala circuit maturation and related behavioral changes.


Asunto(s)
Complejo Nuclear Basolateral , Células-Madre Neurales , Adolescente , Humanos , Adulto , Animales , Ratones , Neuronas , Amígdala del Cerebelo , Afecto
2.
Cell Rep ; 42(7): 112783, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37422764

RESUMEN

Neurogenesis and differentiation of neural stem cells (NSCs) are controlled by cell-intrinsic molecular pathways that interact with extrinsic signaling cues. In this study, we identify a circuit that regulates neurogenesis and cell proliferation in the lateral ventricle-subventricular zone (LV-SVZ). Our results demonstrate that direct glutamatergic projections from the anterior cingulate cortex (ACC), as well as inhibitory projections from calretinin+ local interneurons, modulate the activity of cholinergic neurons in the subependymal zone (subep-ChAT+). Furthermore, in vivo optogenetic stimulation and inhibition of the ACC-subep-ChAT+ circuit are sufficient to control neurogenesis in the ventral SVZ. Both subep-ChAT+ and local calretinin+ neurons play critical roles in regulating ventral SVZ neurogenesis and LV-SVZ cell proliferation.


Asunto(s)
Ventrículos Laterales , Neuronas , Calbindina 2/metabolismo , Neuronas/metabolismo , Neurogénesis/fisiología , Proliferación Celular/fisiología
3.
Front Cell Neurosci ; 15: 797553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002630

RESUMEN

Under normal conditions, neural stem cells (NSCs or B cells) in the adult subventricular zone (SVZ) give rise to amplifying neural progenitor cells (NPCs or C cells), which can produce neuroblasts (or A cells) that migrate to the olfactory bulb and differentiate into new neurons. However, following brain injury, these cells migrate toward the injury site where they differentiate into astrocytes and oligodendrocytes. In this review, we will focus on recent findings that chronicle how astrocytes and oligodendrocytes derived from SVZ-NSCs respond to different types of injury. We will also discuss molecular regulators of SVZ-NSC proliferation and their differentiation into astrocytes and oligodendrocytes. Overall, the goal of this review is to highlight how SVZ-NSCs respond to injury and to summarize the regulatory mechanisms that oversee their glial response. These molecular and cellular processes will provide critical insights needed to develop strategies to promote brain repair following injury using SVZ-NSCs.

4.
J Clin Invest ; 129(10): 4408-4418, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498149

RESUMEN

Reactive astrocytes are associated with every form of neurological injury. Despite their ubiquity, the molecular mechanisms controlling their production and diverse functions remain poorly defined. Because many features of astrocyte development are recapitulated in reactive astrocytes, we investigated the role of nuclear factor I-A (NFIA), a key transcriptional regulator of astrocyte development whose contributions to reactive astrocytes remain undefined. Here, we show that NFIA is highly expressed in reactive astrocytes in human neurological injury and identify unique roles across distinct injury states and regions of the CNS. In the spinal cord, after white matter injury (WMI), NFIA-deficient astrocytes exhibit defects in blood-brain barrier remodeling, which are correlated with the suppression of timely remyelination. In the cortex, after ischemic stroke, NFIA is required for the production of reactive astrocytes from the subventricular zone (SVZ). Mechanistically, NFIA directly regulates the expression of thrombospondin 4 (Thbs4) in the SVZ, revealing a key transcriptional node regulating reactive astrogenesis. Together, these studies uncover critical roles for NFIA in reactive astrocytes and illustrate how region- and injury-specific factors dictate the spectrum of reactive astrocyte responses.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/metabolismo , Factores de Transcripción NFI/metabolismo , Adulto , Animales , Barrera Hematoencefálica , Diferenciación Celular , Sistema Nervioso Central/patología , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Factores de Transcripción NFI/deficiencia , Factores de Transcripción NFI/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Remielinización , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Trombospondinas/genética , Trombospondinas/metabolismo
5.
Cell Rep ; 28(8): 2012-2022.e4, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433979

RESUMEN

Specialized microenvironments, called niches, control adult stem cell proliferation and differentiation. The brain lateral ventricular (LV) neurogenic niche is generated from distinct postnatal radial glial progenitors (pRGPs), giving rise to adult neural stem cells (NSCs) and niche ependymal cells (ECs). Cellular-intrinsic programs govern stem versus supporting cell maturation during adult niche assembly, but how they are differentially initiated within a similar microenvironment remains unknown. Using chemical approaches, we discovered that EGFR signaling powerfully inhibits EC differentiation by suppressing multiciliogenesis. We found that EC pRGPs actively terminated EGF activation through receptor redistribution away from CSF-contacting apical domains and that randomized EGFR membrane targeting blocked EC differentiation. Mechanistically, we uncovered spatiotemporal interactions between EGFR and endocytic adaptor protein Numb. Ca2+-dependent basolateral targeting of Numb is necessary and sufficient for proper EGFR redistribution. These results reveal a previously unknown cellular mechanism for neighboring progenitors to differentially engage environmental signals, initiating adult stem cell niche assembly.


Asunto(s)
Epéndimo/citología , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Transducción de Señal , Nicho de Células Madre , Animales , Animales Recién Nacidos , Perros , Regulación hacia Abajo , Endocitosis , Factor de Crecimiento Epidérmico/metabolismo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones Noqueados , Mutación/genética , Neuroglía/metabolismo , Fosforilación , Transporte de Proteínas
6.
Nat Commun ; 10(1): 779, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770807

RESUMEN

Influenza B virus (IBV) is an acute, respiratory RNA virus that has been assumed to induce the eventual death of all infected cells. We and others have shown however, that infection with apparently cytopathic viruses does not necessarily lead to cell death; some cells can intrinsically clear the virus and persist in the host long-term. To determine if any cells can survive direct IBV infection, we here generate a recombinant IBV capable of activating a host-cell reporter to permanently label all infected cells. Using this system, we demonstrate that IBV infection leads to the formation of a survivor cell population in the proximal airways that are ciliated-like, but transcriptionally and phenotypically distinct from both actively infected and bystander ciliated cells. We also show that survivor cells are critical to maintain respiratory barrier function. These results highlight a host response pathway that preserves the epithelium to limit the severity of IBV disease.


Asunto(s)
Células Epiteliales/virología , Virus de la Influenza B/patogenicidad , Células A549 , Animales , Embrión de Pollo , Pollos , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL
7.
Genes Dev ; 32(11-12): 740-741, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29921662

RESUMEN

During mammalian brain development, radial glial progenitors balance between proliferation and differentiation to generate the laminated cortical layers in a temporally precise fashion. Defects in the individual steps going into this complex organogenesis can result in cortical malformations and human nervous system disorders. In this issue of Genes & Development, Liu and colleagues (pp. 763-780) present experimental evidence that an evolutionarily conserved cellular polarity gene, Pard3 (partitioning-defective 3), controls the balance of radial glial proliferation and differentiation through interaction with the Hippo signal transduction pathway. Conditional deletion of Pard3 in the developing rodent cortex resulted in striking subcortical band heterotopia, reminiscent of a severe form of human cortical malformation.


Asunto(s)
Polaridad Celular , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Proliferación Celular , Vía de Señalización Hippo , Humanos , Proteínas de la Membrana , Neurogénesis , Proteínas Serina-Treonina Quinasas
8.
Annu Rev Neurosci ; 41: 139-161, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29618286

RESUMEN

The addition of new neurons and oligodendroglia in the postnatal and adult mammalian brain presents distinct forms of gray and white matter plasticity. Substantial effort has been devoted to understanding the cellular and molecular mechanisms controlling postnatal neurogenesis and gliogenesis, revealing important parallels to principles governing the embryonic stages. While during central nervous system development, scripted temporal and spatial patterns of neural and glial progenitor proliferation and differentiation are necessary to create the nervous system architecture, it remains unclear what driving forces maintain and sustain postnatal neural stem cell (NSC) and oligodendrocyte progenitor cell (OPC) production of new neurons and glia. In recent years, neuronal activity has been identified as an important modulator of these processes. Using the distinct properties of neurotransmitter ionotropic and metabotropic channels to signal downstream cellular events, NSCs and OPCs share common features in their readout of neuronal activity patterns. Here we review the current evidence for neuronal activity-dependent control of NSC/OPC proliferation and differentiation in the postnatal brain, highlight some potential mechanisms used by the two progenitor populations, and discuss future studies that might advance these research areas further.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Neurogénesis , Neuroglía/fisiología , Neuronas/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Células-Madre Neurales , Neurotransmisores/metabolismo , Células Precursoras de Oligodendrocitos
9.
Nat Commun ; 9(1): 1655, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695808

RESUMEN

Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC's neurogenic potential.


Asunto(s)
Desdiferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Epéndimo/citología , Hidrocefalia/etiología , Neuroglía/fisiología , Animales , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Cilios/fisiología , Ciclopentanos/farmacología , Epéndimo/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Hidrocefalia/patología , Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Neuroglía/citología , Neuronas/fisiología , Cultivo Primario de Células , Pirimidinas/farmacología , Transducción de Señal/fisiología
10.
J Neurosci ; 36(47): 11904-11917, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27881777

RESUMEN

Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood-brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT: Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Regeneración de la Medula Espinal/fisiología , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Intercambio de Guanina Nucleótido Rho , Factores de Tiempo
11.
Artículo en Inglés | MEDLINE | ID: mdl-27468423

RESUMEN

New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered.

12.
Front Neurosci ; 10: 111, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27047330

RESUMEN

Throughout development, neural stem cells (NSCs) give rise to differentiated neurons, astrocytes, and oligodendrocytes which together modulate perception, memory, and behavior in the adult nervous system. To understand how NSCs contribute to postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV) neurogenic niche in the rodent postnatal brain serves as an excellent model system. It is a specialized area containing self-renewing GFAP(+) astrocytes functioning as NSCs generating new neurons throughout life. In addition to this now well-studied regenerative process, the LV niche also generates differentiated astrocytes, playing an important role for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic identity of NSCs has complicated their distinction from terminally-differentiated astrocytes in the niche. Our current models of postnatal/adult LV neurogenesis do not take into account local astrogenesis, or the possibility that cellular markers may be similar between non-dividing GFAP(+) NSCs and their differentiated astrocyte daughters. Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with extracellular/niche-driven cues. It is generally believed that these local effects are responsible for sustaining neurogenesis, though behavioral paradigms and disease states have suggested possibilities for neural circuit-level modulation. With recent experimental findings that neuronal stimulation can directly evoke responses in LV NSCs, it is possible that this exciting property will add a new dimension to identifying postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia.

13.
Nat Commun ; 7: 11313, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27095423

RESUMEN

Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.


Asunto(s)
Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Inhibición Neural/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Estimulación Eléctrica , Corteza Entorrinal/citología , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Expresión Génica , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microtomía , N-Metilaspartato/farmacología , Nestina/genética , Nestina/metabolismo , Inhibición Neural/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Piridazinas/farmacología , Sinapsis/efectos de los fármacos , Tamoxifeno/farmacología , Técnicas de Cultivo de Tejidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
14.
Nat Neurosci ; 17(7): 934-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24880216

RESUMEN

Postnatal and adult subventricular zone (SVZ) neurogenesis is believed to be primarily controlled by neural stem cell (NSC)-intrinsic mechanisms, interacting with extracellular and niche-driven cues. Although behavioral experiments and disease states have suggested possibilities for higher level inputs, it is unknown whether neural activity patterns from discrete circuits can directly regulate SVZ neurogenesis. We identified a previously unknown population of choline acetyltransferase (ChAT)(+) neurons residing in the rodent SVZ neurogenic niche. These neurons showed morphological and functional differences from neighboring striatal counterparts and released acetylcholine locally in an activity-dependent fashion. Optogenetic inhibition and stimulation of subependymal ChAT(+) neurons in vivo indicated that they were necessary and sufficient to control neurogenic proliferation. Furthermore, whole-cell recordings and biochemical experiments revealed direct SVZ NSC responses to local acetylcholine release, synergizing with fibroblast growth factor receptor activation to increase neuroblast production. These results reveal an unknown gateway connecting SVZ neurogenesis to neuronal activity-dependent control and suggest possibilities for modulating neuroregenerative capacities in health and disease.


Asunto(s)
Ventrículos Cerebrales/fisiología , Colina O-Acetiltransferasa/fisiología , Neurogénesis/fisiología , Neuronas/enzimología , Acetilcolina/farmacología , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Ventrículos Cerebrales/citología , Colina O-Acetiltransferasa/genética , Electroforesis en Gel de Poliacrilamida , Fenómenos Electrofisiológicos , Inmunohistoquímica , Ratones , Microscopía Electrónica , Células-Madre Neurales/efectos de los fármacos , Neuroimagen , Optogenética , Técnicas de Placa-Clamp , Receptores de Factores de Crecimiento de Fibroblastos/fisiología
15.
Cell Rep ; 6(5): 783-791, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24582961

RESUMEN

Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Dendritas/enzimología , Proteínas de Drosophila/metabolismo , Células Receptoras Sensoriales/enzimología , Animales , Drosophila , Isoformas de Proteínas
16.
Nature ; 497(7449): 369-73, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23615612

RESUMEN

Postnatal/adult neural stem cells (NSCs) within the rodent subventricular zone (SVZ; also called subependymal zone) generate doublecortin (Dcx)(+) neuroblasts that migrate and integrate into olfactory bulb circuitry. Continuous production of neuroblasts is controlled by the SVZ microenvironmental niche. It is generally thought that enhancing the neurogenic activities of endogenous NSCs may provide needed therapeutic options for disease states and after brain injury. However, SVZ NSCs can also differentiate into astrocytes. It remains unclear whether there are conditions that favour astrogenesis over neurogenesis in the SVZ niche, and whether astrocytes produced there have different properties compared with astrocytes produced elsewhere in the brain. Here we show in mice that SVZ-generated astrocytes express high levels of thrombospondin 4 (Thbs4), a secreted homopentameric glycoprotein, in contrast to cortical astrocytes, which express low levels of Thbs4. We found that localized photothrombotic/ischaemic cortical injury initiates a marked increase in Thbs4(hi) astrocyte production from the postnatal SVZ niche. Tamoxifen-inducible nestin-creER(tm)4 lineage tracing demonstrated that it is these SVZ-generated Thbs4(hi) astrocytes, and not Dcx(+) neuroblasts, that home-in on the injured cortex. This robust post-injury astrogenic response required SVZ Notch activation modulated by Thbs4 via direct Notch1 receptor binding and endocytosis to activate downstream signals, including increased Nfia transcription factor expression important for glia production. Consequently, Thbs4 homozygous knockout mice (Thbs4(KO/KO)) showed severe defects in cortical-injury-induced SVZ astrogenesis, instead producing cells expressing Dcx migrating from SVZ to the injury sites. These alterations in cellular responses resulted in abnormal glial scar formation after injury, and significantly increased microvascular haemorrhage into the brain parenchyma of Thbs4(KO/KO) mice. Taken together, these findings have important implications for post-injury applications of endogenous and transplanted NSCs in the therapeutic setting, as well as disease states where Thbs family members have important roles.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Ventrículos Cerebrales/citología , Receptor Notch1/metabolismo , Trombospondinas/metabolismo , Animales , Linaje de la Célula , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cicatriz/metabolismo , Cicatriz/patología , Proteína Doblecortina , Endocitosis , Ratones , Ratones Noqueados , Factores de Transcripción NFI/metabolismo , Células-Madre Neurales/citología , Neuroglía/citología , Neuroglía/metabolismo , Neuroglía/patología , Transducción de Señal , Trombospondinas/deficiencia , Trombospondinas/genética
17.
J Biol Chem ; 288(4): 2623-31, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23223235

RESUMEN

Prolactin-stimulated adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) mediates several reproductive behaviors including mating/pregnancy, dominant male pheromone preference in females, and paternal recognition of offspring. However, downstream signaling mechanisms underlying prolactin-induced adult neurogenesis are completely unknown. We report here for the first time that prolactin activates extracellular signal-regulated kinase 5 (ERK5), a MAP kinase that is specifically expressed in the neurogenic regions of the adult mouse brain. Knockdown of ERK5 by retroviral infection of shRNA attenuates prolactin-stimulated neurogenesis in SVZ-derived adult neural stem/progenitor cells (aNPCs). Inducible erk5 deletion in adult neural stem cells of transgenic mice inhibits neurogenesis in the SVZ and OB following prolactin infusion or mating/pregnancy. These results identify ERK5 as a novel and critical signaling mechanism underlying prolactin-induced adult neurogenesis.


Asunto(s)
Encéfalo/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/fisiología , Bulbo Olfatorio/metabolismo , Prolactina/metabolismo , Animales , Mapeo Encefálico/métodos , Femenino , Eliminación de Gen , Genotipo , Ratones , Ratones Noqueados , Microscopía Confocal/métodos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neurogénesis , Proteínas Recombinantes/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Tamoxifeno/farmacología
18.
PLoS One ; 7(11): e49622, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185386

RESUMEN

Although adult-born neurons in the subventricular zone (SVZ) and olfactory bulb (OB) have been extensively characterized at the cellular level, their functional impact on olfactory behavior is still highly controversial with many conflicting results reported in the literature. Furthermore, signaling mechanisms regulating adult SVZ/OB neurogenesis are not well defined. Here we report that inducible and targeted deletion of erk5, a MAP kinase selectively expressed in the adult neurogenic regions of the adult brain, impairs adult neurogenesis in the SVZ and OB of transgenic mice. Although erk5 deletion had no effect on olfactory discrimination among discrete odorants in the habituation/dishabituation assay, it reduced short-term olfactory memory as well as detection sensitivity to odorants and pheromones including those evoking aggression and fear. Furthermore, these mice show impaired acquisition of odor-cued associative olfactory learning, a novel phenotype that had not been previously linked to adult neurogenesis. These data suggest that ERK5 MAP kinase is a critical kinase signaling pathway regulating adult neurogenesis in the SVZ/OB, and provide strong evidence supporting a functional role for adult neurogenesis in several distinct forms of olfactory behavior.


Asunto(s)
Proteína Quinasa 7 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Bulbo Olfatorio/metabolismo , Animales , Encéfalo/fisiología , Bromodesoxiuridina/farmacología , Eliminación de Gen , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal/métodos , Neurogénesis , Neuronas/metabolismo , Odorantes , Fenotipo , Transducción de Señal , Olfato/genética , Olfato/fisiología , Tamoxifeno/farmacología
19.
J Biol Chem ; 287(28): 23306-17, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22645146

RESUMEN

Recent studies have led to the exciting idea that adult-born neurons in the dentate gyrus of the hippocampus may play a role in hippocampus-dependent memory formation. However, signaling mechanisms that regulate adult hippocampal neurogenesis are not well defined. Here we report that extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, is selectively expressed in the neurogenic regions of the adult mouse brain. We present evidence that shRNA suppression of ERK5 in adult hippocampal neural stem/progenitor cells (aNPCs) reduces the number of neurons while increasing the number of cells expressing markers for stem/progenitor cells or proliferation. Furthermore, shERK5 attenuates both transcription and neuronal differentiation mediated by Neurogenin 2, a transcription factor expressed in adult hippocampal neural progenitor cells. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, promotes neurogenesis in cultured aNPCs and in the dentate gyrus of the mouse brain. Moreover, neurotrophins including NT3 activate ERK5 and stimulate neuronal differentiation in aNPCs in an ERK5-dependent manner. Finally, inducible and conditional deletion of ERK5 specifically in the neurogenic regions of the adult mouse brain delays the normal progression of neuronal differentiation and attenuates adult neurogenesis in vivo. These data suggest ERK5 signaling as a critical regulator of adult hippocampal neurogenesis.


Asunto(s)
Hipocampo/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Antineoplásicos Hormonales/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , MAP Quinasa Quinasa 5/genética , MAP Quinasa Quinasa 5/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Proteína Quinasa 7 Activada por Mitógenos/genética , Células 3T3 NIH , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Interferencia de ARN , Tamoxifeno/farmacología
20.
J Neurosci ; 32(19): 6444-55, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573667

RESUMEN

Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.


Asunto(s)
Extinción Psicológica/fisiología , Miedo/fisiología , Eliminación de Gen , Memoria a Largo Plazo/fisiología , Proteína Quinasa 7 Activada por Mitógenos/deficiencia , Proteína Quinasa 7 Activada por Mitógenos/genética , Inhibición Neural/genética , Neurogénesis/fisiología , Envejecimiento/genética , Animales , Giro Dentado/enzimología , Giro Dentado/fisiología , Marcación de Gen/métodos , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Distribución Aleatoria , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA