Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
EMBO Mol Med ; 16(3): 523-546, 2024 Mar.
Article En | MEDLINE | ID: mdl-38374466

Huntington's disease (HD) is an incurable inherited disorder caused by a repeated expansion of glutamines in the huntingtin gene (Htt). The mutant protein causes neuronal degeneration leading to severe motor and psychological symptoms. Selective downregulation of the mutant Htt gene expression is considered the most promising therapeutic approach for HD. We report the identification of small molecule inhibitors of Spt5-Pol II, SPI-24 and SPI-77, which selectively lower mutant Htt mRNA and protein levels in HD cells. In the BACHD mouse model, their direct delivery to the striatum diminished mutant Htt levels, ameliorated mitochondrial dysfunction, restored BDNF expression, and improved motor and anxiety-like phenotypes. Pharmacokinetic studies revealed that these SPIs pass the blood-brain-barrier. Prolonged subcutaneous injection or oral administration to early-stage mice significantly delayed disease deterioration. SPI-24 long-term treatment had no side effects or global changes in gene expression. Thus, lowering mutant Htt levels by small molecules can be an effective therapeutic strategy for HD.


Huntington Disease , Animals , Mice , Brain/metabolism , Corpus Striatum , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Phenotype , RNA, Messenger/genetics
2.
PNAS Nexus ; 2(3): pgad068, 2023 Mar.
Article En | MEDLINE | ID: mdl-37007714

Store-operated calcium entry (SOCE) is a vital process aimed at refilling cellular internal Ca2+ stores and a primary cellular signaling driver for transcription factors' entry to the nucleus. SOCE-associated regulatory factor (SARAF)/TMEM66 is an endoplasmic reticulum (ER)-resident transmembrane protein that promotes SOCE inactivation and prevents Ca2+ overfilling of the cell. Here, we demonstrate that mice deficient in SARAF develop age-dependent sarcopenic obesity with decreased energy expenditure, lean mass, and locomotion without affecting food consumption. Moreover, SARAF ablation reduces hippocampal proliferation, modulates the activity of the hypothalamus-pituitary-adrenal (HPA) axis, and mediates changes in anxiety-related behaviors. Interestingly, selective SARAF ablation in the hypothalamus's paraventricular nucleus (PVN) neurons reduces old age-induced obesity and preserves locomotor activity, lean mass, and energy expenditure, suggesting a possible central control with a site-specific role for SARAF. At the cellular level, SARAF ablation in hepatocytes leads to elevated SOCE, elevated vasopressin-induced Ca2+ oscillations, and an increased mitochondrial spare respiratory capacity (SPC), thus providing insights into the cellular mechanisms that may affect the global phenotypes. These effects may be mediated via the liver X receptor (LXR) and IL-1 signaling metabolic regulators explicitly altered in SARAF ablated cells. In short, our work supports both central and peripheral roles of SARAF in regulating metabolic, behavioral, and cellular responses.

4.
Nature ; 600(7890): 713-719, 2021 12.
Article En | MEDLINE | ID: mdl-34880502

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Gastrointestinal Microbiome , Smoking Cessation , Weight Gain , Animals , Cross-Sectional Studies , Dysbiosis/etiology , Dysbiosis/metabolism , Dysbiosis/pathology , Mice , Models, Animal , Smoking/metabolism , Smoking/pathology
5.
J Exp Med ; 218(11)2021 11 01.
Article En | MEDLINE | ID: mdl-34477806

The autoimmune regulator (AIRE) is essential for the establishment of central tolerance and prevention of autoimmunity. Interestingly, different AIRE mutations cause autoimmunity in either recessive or dominant-negative manners. Using engineered mouse models, we establish that some monoallelic mutants, including C311Y and C446G, cause breakdown of central tolerance. By using RNAseq, ATACseq, ChIPseq, and protein analyses, we dissect the underlying mechanisms for their dominancy. Specifically, we show that recessive mutations result in a lack of AIRE protein expression, while the dominant mutations in both PHD domains augment the expression of dysfunctional AIRE with altered capacity to bind chromatin and induce gene expression. Finally, we demonstrate that enhanced AIRE expression is partially due to increased chromatin accessibility of the AIRE proximal enhancer, which serves as a docking site for AIRE binding. Therefore, our data not only elucidate why some AIRE mutations are recessive while others dominant, but also identify an autoregulatory mechanism by which AIRE negatively modulates its own expression.


Homeostasis/genetics , Mutation/genetics , Transcription Factors/genetics , Animals , Autoimmunity/genetics , Chromatin/genetics , Dissection/methods , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Models, Animal , AIRE Protein
6.
Mol Psychiatry ; 26(11): 6149-6158, 2021 11.
Article En | MEDLINE | ID: mdl-34349224

The COVID-19 pandemic poses multiple psychologically stressful challenges and is associated with an increased risk for mental illness. Previous studies have focused on the psychopathological symptoms associated with the outbreak peak. Here, we examined the behavioural and mental-health impact of the pandemic in Israel using an online survey, during the six weeks encompassing the end of the first outbreak and the beginning of the second. We used clinically validated instruments to assess anxiety- and depression-related emotional distress, symptoms, and coping strategies, as well as questions designed to specifically assess COVID-19-related concerns. Higher emotional burden was associated with being female, younger, unemployed, living in high socioeconomic status localities, having prior medical conditions, encountering more people, and experiencing physiological symptoms. Our findings highlight the environmental context and its importance in understanding individual ability to cope with the long-term stressful challenges of the pandemic.


COVID-19 , Anxiety/epidemiology , Depression/epidemiology , Disease Outbreaks , Female , Humans , Pandemics , SARS-CoV-2 , Stress, Psychological/epidemiology
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article En | MEDLINE | ID: mdl-34426495

Exercise and circadian biology are closely intertwined with physiology and metabolism, yet the functional interaction between circadian clocks and exercise capacity is only partially characterized. Here, we tested different clock mutant mouse models to examine the effect of the circadian clock and clock proteins, namely PERIODs and BMAL1, on exercise capacity. We found that daytime variance in endurance exercise capacity is circadian clock controlled. Unlike wild-type mice, which outperform in the late compared with the early part of their active phase, PERIODs- and BMAL1-null mice do not show daytime variance in exercise capacity. It appears that BMAL1 impairs and PERIODs enhance exercise capacity in a daytime-dependent manner. An analysis of liver and muscle glycogen stores as well as muscle lipid utilization suggested that these daytime effects mostly relate to liver glycogen levels and correspond to the animals' feeding behavior. Furthermore, given that exercise capacity responds to training, we tested the effect of training at different times of the day and found that training in the late compared with the early part of the active phase improves exercise performance. Overall, our findings suggest that clock proteins shape exercise capacity in a daytime-dependent manner through changes in liver glycogen levels, likely due to their effect on animals' feeding behavior.


CLOCK Proteins/physiology , Exercise Tolerance/physiology , Physical Conditioning, Animal/physiology , ARNTL Transcription Factors/physiology , Animals , CLOCK Proteins/genetics , Feeding Behavior , Female , Light , Liver Glycogen/metabolism , Male , Mice , Mice, Inbred C57BL , Muscles/metabolism , Mutation , Period Circadian Proteins/physiology , Photoperiod , Sex Characteristics , Time Factors
8.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Article En | MEDLINE | ID: mdl-32888430

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Crohn Disease/microbiology , Epithelial Cells/metabolism , Gastrointestinal Microbiome , Histocompatibility Antigens Class II/metabolism , Intestine, Small/immunology , Intestine, Small/microbiology , Transcriptome/genetics , Animals , Anti-Bacterial Agents/pharmacology , Circadian Clocks/physiology , Crohn Disease/immunology , Crohn Disease/metabolism , Diet , Epithelial Cells/cytology , Epithelial Cells/immunology , Flow Cytometry , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Homeostasis , In Situ Hybridization, Fluorescence , Interleukin-10/metabolism , Interleukin-10/pharmacology , Intestine, Small/physiology , Lymphocytes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodicity , T-Lymphocytes/immunology , Transcriptome/physiology
9.
Nat Cancer ; 1(9): 894-908, 2020 09.
Article En | MEDLINE | ID: mdl-35121952

Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.


Argininosuccinate Synthase , Breast Neoplasms , Animals , Argininosuccinate Synthase/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Female , Humans , Immune Checkpoint Inhibitors , Mice , Purines
10.
Cell Rep ; 29(8): 2144-2153.e7, 2019 11 19.
Article En | MEDLINE | ID: mdl-31747589

Patients with germline mutations in the urea-cycle enzyme argininosuccinate lyase (ASL) are at risk for developing neurobehavioral and cognitive deficits. We find that ASL is prominently expressed in the nucleus locus coeruleus (LC), the central source of norepinephrine. Using natural history data, we show that individuals with ASL deficiency are at risk for developing attention deficits. By generating LC-ASL-conditional knockout (cKO) mice, we further demonstrate altered response to stressful stimuli with increased seizure reactivity in LC-ASL-cKO mice. Depletion of ASL in LC neurons leads to reduced amount and activity of tyrosine hydroxylase (TH) and to decreased catecholamines synthesis, due to decreased nitric oxide (NO) signaling. NO donors normalize catecholamine levels in the LC, seizure sensitivity, and the stress response in LC-ASL-cKO mice. Our data emphasize ASL importance for the metabolic regulation of LC function with translational relevance for ASL deficiency (ASLD) patients as well as for LC-related pathologies.


Argininosuccinate Lyase/metabolism , Locus Coeruleus/metabolism , Tyrosine 3-Monooxygenase/metabolism , Urea Cycle Disorders, Inborn/metabolism , Animals , Catecholamines/metabolism , Cell Nucleus/metabolism , Mice , Mice, Knockout , Nitric Oxide/metabolism , Seizures/metabolism
11.
Mol Ther ; 27(10): 1848-1862, 2019 10 02.
Article En | MEDLINE | ID: mdl-31375359

Non-alcoholic steatosis and non-alcoholic steatohepatitis (NASH) are liver pathologies characterized by severe metabolic alterations due to fat accumulation that lead to liver damage, inflammation, and fibrosis. We demonstrate that the voltage-dependent anion channel 1 (VDAC1)-based peptide R-Tf-D-LP4 arrested steatosis and NASH progression, as produced by a high-fat diet (HFD-32) in a mouse model, and reversed liver pathology to a normal-like state. VDAC1, a multi-functional mitochondrial protein, regulates cellular metabolic and energetic functions and apoptosis and interacts with many proteins. R-Tf-D-LP4 treatment eliminated hepatocyte ballooning degeneration, inflammation, and liver fibrosis associated with steatosis, NASH, and hepatocarcinoma, and it restored liver pathology-associated enzyme and glucose levels. Peptide treatment affected carbohydrate and lipid metabolism, increasing the expression of enzymes and factors associated with fatty acid transport to mitochondria, enhancing ß-oxidation and thermogenic processes, yet decreasing the expression of enzymes and regulators of fatty acid synthesis. The VDAC1-based peptide thus offers a promising therapeutic approach for steatosis and NASH.


Cell-Penetrating Peptides/administration & dosage , Diet, High-Fat/adverse effects , Liver Cirrhosis/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Voltage-Dependent Anion Channel 1/chemistry , Animals , Carbohydrate Metabolism/drug effects , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/pharmacology , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Lipid Metabolism/drug effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Treatment Outcome , Voltage-Dependent Anion Channel 1/genetics
12.
Nature ; 572(7770): 474-480, 2019 08.
Article En | MEDLINE | ID: mdl-31330533

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Amyotrophic Lateral Sclerosis/microbiology , Amyotrophic Lateral Sclerosis/physiopathology , Gastrointestinal Microbiome/physiology , Niacinamide/metabolism , Akkermansia , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Dysbiosis , Female , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Humans , Longevity , Male , Mice , Mice, Transgenic , Niacinamide/biosynthesis , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Survival Rate , Symbiosis/drug effects , Verrucomicrobia/metabolism , Verrucomicrobia/physiology
13.
Cell Metab ; 29(5): 1092-1103.e3, 2019 05 07.
Article En | MEDLINE | ID: mdl-30773466

Daily rhythms in animal physiology are driven by endogenous circadian clocks in part through rest-activity and feeding-fasting cycles. Here, we examined principles that govern daily respiration. We monitored oxygen consumption and carbon dioxide release, as well as tissue oxygenation in freely moving animals to specifically dissect the role of circadian clocks and feeding time on daily respiration. We found that daily rhythms in oxygen and carbon dioxide are clock controlled and that time-restricted feeding restores their rhythmicity in clock-deficient mice. Remarkably, day-time feeding dissociated oxygen rhythms from carbon dioxide oscillations, whereby oxygen followed activity, and carbon dioxide was shifted and aligned with food intake. In addition, changes in carbon dioxide levels altered clock gene expression and phase shifted the clock. Collectively, our findings indicate that oxygen and carbon dioxide rhythms are clock controlled and feeding regulated and support a potential role for carbon dioxide in phase resetting peripheral clocks upon feeding.


Carbon Dioxide/metabolism , Circadian Clocks/physiology , Circadian Rhythm/physiology , Feeding Behavior/physiology , Oxygen/metabolism , ARNTL Transcription Factors/genetics , Animals , Eating , Gene Expression/genetics , Gene Knockout Techniques , Locomotion/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Oxygen Consumption/genetics , Period Circadian Proteins/genetics , Rats , Rats, Wistar , Respiration
14.
FASEB J ; 33(4): 5101-5111, 2019 04.
Article En | MEDLINE | ID: mdl-30615487

Understanding how body weight is regulated at the molecular level is essential for treating obesity. We show that female mice genetically lacking protein tyrosine phosphatase (PTP) receptor type α (PTPRA) exhibit reduced weight and adiposity and increased energy expenditure, and are more resistant to diet-induced obesity than matched wild-type control mice. These mice also exhibit reduced levels of circulating leptin and are leptin hypersensitive, suggesting that PTPRA inhibits leptin signaling in the hypothalamus. Male and female PTPRA-deficient mice fed a high-fat diet were leaner and displayed increased metabolic rates and lower circulating leptin levels, indicating that the effects of loss of PTPRA persist in the obese state. Molecularly, PTPRA down-regulates leptin receptor signaling by dephosphorylating the receptor-associated kinase JAK2, with which the phosphatase associates constitutively. In contrast to the closely related tyrosine phosphatase ε, leptin induces only weak phosphorylation of PTPRA at its C-terminal regulatory site Y789, and this does not affect the activity of PTPRA toward JAK2. PTPRA is therefore an inhibitor of hypothalamic leptin signaling in vivo and may prevent premature activation of leptin signaling, as well as return signaling to baseline after exposure to leptin.-Cohen-Sharir, Y., Kuperman, Y., Apelblat, D., den Hertog, J., Spiegel, I., Knobler, H., Elson, A. Protein tyrosine phosphatase alpha inhibits hypothalamic leptin receptor signaling and regulates body weight in vivo.


Hypothalamus/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 4/metabolism , Receptors, Leptin/metabolism , Adiposity/physiology , Animals , Body Weight/physiology , Female , Janus Kinase 2/metabolism , Leptin/metabolism , Male , Mice, Knockout , Obesity/metabolism , Phosphorylation/physiology , Physical Conditioning, Animal/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 4/genetics , Signal Transduction/physiology
15.
Nat Metab ; 1(1): 58-69, 2019 01.
Article En | MEDLINE | ID: mdl-32694806

Enteroendocrine cells relay energy-derived signals to immune cells to signal states of nutrient abundance and control immunometabolism. Emerging data suggest that the gut-derived nutrient-induced incretin glucose-dependent insulinotropic polypeptide (GIP) operates at the interface of metabolism and inflammation. Here we show that high-fat diet (HFD)-fed mice with immune cell-targeted GIP receptor (GIPR) deficiency exhibit greater weight gain, insulin resistance, hepatic steatosis and significant myelopoiesis concomitantly with impaired energy expenditure and inguinal white adipose tissue (WAT) beiging. Expression of the S100 calcium-binding protein S100A8 was increased in the WAT of mice with immune cell-targeted GIPR deficiency and co-deletion of GIPR and the heterodimer S100A8/A9 in immune cells ameliorated the aggravated metabolic and inflammatory phenotype following a HFD. Specific GIPR deletion in myeloid cells identified this lineage as the target of GIP effects. Furthermore, GIP directly downregulated S100A8 expression in adipose tissue macrophages. Collectively, our results identify a myeloid-GIPR-S100A8/A9 signalling axis coupling nutrient signals to the control of inflammation and adaptive thermogenesis.


Body Weight , Calgranulin A/metabolism , Calgranulin B/metabolism , Gastric Inhibitory Polypeptide/metabolism , Inflammation/etiology , Inflammation/metabolism , Myeloid Cells/metabolism , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Calgranulin A/genetics , Calgranulin B/genetics , Immunity , Immunohistochemistry , Inflammation/pathology , Insulin Resistance/genetics , Mice , Myelopoiesis/genetics , Phenotype , Receptors, Gastrointestinal Hormone/deficiency , Receptors, Gastrointestinal Hormone/metabolism
16.
Environ Pollut ; 239: 532-543, 2018 Aug.
Article En | MEDLINE | ID: mdl-29684880

Obesity and exposure to particular matter (PM) have become two leading global threats to public health. However, the exact mechanisms and tissue-specificity of their health effects are largely unknown. Here we investigate whether a metabolic challenge (early nutritional obesity) synergistically interacts with an environmental challenge (PM exposure) to alter genes representing key response pathways, in a tissue-specific manner. Mice subjected to 7 weeks obesogenic nutrition were exposed every other day during the final week and a half to aqueous extracts of PM collected in the city of London (UK). The expression of 61 selected genes representing key response pathways were investigated in lung, liver, white and brown adipose tissues. Principal component analysis (PCA) revealed distinct patterns of expression changes between the 4 tissues, particularly in the lungs and the liver. Surprisingly, the lung responded to the nutrition challenge. The response of these organs to the PM challenge displayed opposite patterns for some key genes, in particular, those related to the Nrf2 pathway. While the contribution to the variance in gene expression changes in mice exposed to the combined challenge were largely similar among the tissues in PCA1, PCA2 exhibited predominant contribution of inflammatory and oxidative stress responses to the variance in the lungs, and a greater contribution of autophagy genes and MAP kinases in adipose tissues. Possible involvement of alterations in DNA methylation was demonstrated by cell-type-specific responses to a methylation inhibitor. Correspondingly, the DNA methyltransferase Dnmt3a2 increased in the lungs but decreased in the liver, demonstrating potential tissue-differential synergism between nutritional and PM exposure. The results suggest that urban PM, containing dissolved metals, interacts with obesogenic nutrition to regulate diverse response pathways including inflammation and oxidative stress, in a tissue-specific manner. Tissue-differential effects on DNA methylation may underlie tissue-specific responses to key stress-response genes such as catalase and Nrf2.


Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Adipose Tissue/metabolism , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Animals , Cities , Gene Expression/drug effects , London , Lung/drug effects , Male , Metals/analysis , Mice , Obesity/epidemiology , Oxidative Stress/physiology , Particulate Matter/analysis
17.
Nat Immunol ; 18(6): 665-674, 2017 06.
Article En | MEDLINE | ID: mdl-28459435

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Adipose Tissue, Brown/immunology , Macrophages/immunology , Methyl-CpG-Binding Protein 2/genetics , Sympathetic Nervous System/metabolism , Thermogenesis/immunology , Adipocytes, Brown , Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/metabolism , Animals , Axons/metabolism , CX3C Chemokine Receptor 1 , Energy Metabolism/immunology , Flow Cytometry , Homeostasis , Immunoblotting , Macrophages/metabolism , Mice , Mutagenesis, Site-Directed , Nerve Tissue Proteins/metabolism , Norepinephrine/metabolism , Obesity/genetics , Real-Time Polymerase Chain Reaction , Receptors, Cell Surface/metabolism , Receptors, Chemokine/metabolism , Semaphorins/metabolism
18.
Sci Rep ; 7: 44401, 2017 03 09.
Article En | MEDLINE | ID: mdl-28276496

Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer's disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions.


Calcium/metabolism , Cognition/physiology , Hippocampus/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Neurons/metabolism , Animals , Energy Metabolism/physiology , Female , Hippocampus/physiopathology , Locomotion/physiology , Long-Term Potentiation/physiology , Male , Maze Learning/physiology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/deficiency , Neurons/pathology , Postural Balance/physiology , Prosencephalon/metabolism , Prosencephalon/physiopathology , Psychomotor Disorders/metabolism , Psychomotor Disorders/physiopathology , Rotarod Performance Test , Spatial Memory/physiology , Synaptic Transmission/physiology
20.
Nat Neurosci ; 20(3): 385-388, 2017 Mar.
Article En | MEDLINE | ID: mdl-28135239

The hypothalamic-pituitary-adrenal axis is a pivotal component of an organism's response to stressful challenges, and dysfunction of this neuroendocrine axis is associated with a variety of physiological and psychological pathologies. We found that corticotropin-releasing factor type 1 receptor within the paraventricular nucleus of the hypothalamus is an important central component of hypothalamic-pituitary-adrenal axis regulation that prepares the organism for successive exposure to stressful stimuli.


Hypothalamo-Hypophyseal System/physiology , Paraventricular Hypothalamic Nucleus/physiology , Pituitary-Adrenal System/physiology , Receptors, Corticotropin-Releasing Hormone/physiology , Stress, Physiological/physiology , Stress, Psychological/physiopathology , Animals , Corticotropin-Releasing Hormone/pharmacology , Corticotropin-Releasing Hormone/physiology , Cortisone/blood , Locomotion/physiology , Male , Maze Learning/physiology , Mice , Mice, Knockout , Mice, Transgenic , Receptors, Corticotropin-Releasing Hormone/genetics
...