Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 94(31): 10976-10983, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35877111

RESUMEN

The binding of calcium and magnesium ions (M2+) by polymers and other macromolecules in aqueous solution is ubiquitous across chemistry and biology. At present, it is difficult to assess the binding affinity of macromolecules for M2+ without recourse to potentiometric titrations and/or isothermal titration calorimetry. Both of these techniques require specialized equipment, and the measurements can be difficult to perform and interpret. Here, we present a new method based on 1H NMR chemical shift imaging (CSI) that enables the binding affinity of polymers to be assessed in a single experiment on standard high-field NMR equipment. In our method, M2+ acetate salt is weighed into a standard 5 mm NMR tube and a solution of polymer layered on top. Dissolution and diffusion of the salt carry the M2+ and acetate ions up through the solution. The concentrations of acetate, [Ac], and free (unbound) M2+, [M2+]f, are measured at different positions along the sample by CSI. Binding of M2+ to the polymer reduces [M2+]f and hinders the upward diffusion of M2+. A discrepancy is thus observed between [Ac] and [M2+]f from which the binding affinity of the polymer can be assessed. For systems which form insoluble complexes with M2+, such as sodium polyacrylate or carboxylate-functionalized nanocellulose (CNC), we can determine the concentration of M2+ at which the polymer will precipitate. We can also predict [M2+]f when a solution of polymer is mixed homogeneously with M2+ salt. We assess the binding properties of sodium polyacrylate, alginate, polystyrene sulfonate, CNC, polyethyleneimine, ethylenediamenetetraacetic acid, and maleate.


Asunto(s)
Calcio , Magnesio , Acetatos , Iones , Magnesio/metabolismo , Espectroscopía de Resonancia Magnética , Polímeros
2.
J Colloid Interface Sci ; 594: 217-227, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33756365

RESUMEN

HYPOTHESIS: The classical STD NMR protocol to monitor solvent interactions in gels is strongly dependent on gelator and solvent concentrations and does not report on the degree of structuration of the solvent at the particle/solvent interface. We hypothesised that, for suspensions of large gelator particles, solvent structuration could be characterised by STD NMR when taking into account the particle-to-solvent 1H-1H spin diffusion transfer using the 1D diffusion equation. EXPERIMENTS: We have carried out a systematic study on effect of gelator and solvent concentrations, and gelator surface charge, affecting the behaviour of the classical STD NMR build-up curves. To do so, we have characterised solvent interactions in dispersions of starch and cellulose-like particles prepared in deuterated water and alcohol/D2O mixtures. FINDINGS: The Spin Diffusion Transfer Difference (SDTD) NMR protocol is independent of the gelator and solvent concentrations, hence allowing the estimation of the degree of solvent structuration within different particle networks. In addition, the simulation of SDTD build-up curves using the general one-dimensional diffusion equation allows the determination of minimum distances (r) and spin diffusion rates (D) at the particle/solvent interface. This novel NMR protocol can be readily extended to characterise the solvent(s) organisation in any type of colloidal systems constituted by large particles.

3.
Anal Chem ; 92(19): 12789-12794, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32897055

RESUMEN

The titratable acidity, alkalinity, and carboxylate content are fundamental properties required for the understanding of aqueous chemical systems. Here, we present a set of new methods that allow these properties to be determined directly by 1H NMR without the labor, cost, and sample quantity associated with running separate potentiometric or conductometric titrations. Our methods require only the measurement of the pH-sensitive 1H chemical shifts of indicator molecules and do not require the tedious titration of reagents into a sample. To determine the titratable acidity, an excess of 2-methylimidazole (2MI) is added to a sample and the quantity of protons absorbed by 2MI is determined from its 1H chemical shifts. The titratable alkalinity of a sample can be similarly determined using acetic acid. To determine the concentration of deprotonated carboxylates, a sample is acidified with HCl, and the quantity of H+ absorbed is determined from the 1H chemical shift of methylphosphonic acid. We validate our methods by demonstrating the measurement of the acidity of fruit-flavored drinks, the alkalinity of tap water, and the carboxylate content of nanocellulose dispersions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...