Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Br J Neurosurg ; : 1-6, 2024 Apr 14.
Article En | MEDLINE | ID: mdl-38616542

BACKGROUND AND IMPORTANCE: Calcifying pseudoneoplasms of the neuraxis (CAPNON) is an extremely rare tumor, with nearly 150 cases have been reported in the literature. We present a case of CAPNON at foramen magnum (cervicomedullary junction). We also discuss the histological and radiological features of this rare pathology. CLINICAL PRESENTATION: A 35-year-old male patient presented to our center complaining of neck pain for the last 6 months and for the last 3 months has had headaches associated with nausea, blurred vision and papilledema. The patient's magnetic resonance imaging showed the presence of right craniocervical junction intra-dural extramedullary tumor. Neuro examination showed no neurological deficits. He underwent midline suboccipital craniotomy with C1 laminectomy. The mass was completely resected, and histopathology confirmed it to be a CAPNON. CONCLUSION: We presented a new case of CAPNON at cervicomedullary junction. The tumor was radically resected, without any complications. Resection of this kind of tumor is curative, and the need for post-operative chemo or radiotherapy is unnecessary, which depends on the outcome of future research and the long-term follow ups.

2.
Neuropathol Appl Neurobiol ; 50(2): e12979, 2024 Apr.
Article En | MEDLINE | ID: mdl-38605644

In 2015, a groundswell of brain tumour patient, carer and charity activism compelled the UK Minister for Life Sciences to form a brain tumour research task and finish group. This resulted, in 2018, with the UK government pledging £20m of funding, to be paralleled with £25m from Cancer Research UK, specifically for neuro-oncology research over the subsequent 5 years. Herein, we review if and how the adult brain tumour research landscape in the United Kingdom has changed over that time and what challenges and bottlenecks remain. We have identified seven universal brain tumour research priorities and three cross-cutting themes, which span the research spectrum from bench to bedside and back again. We discuss the status, challenges and recommendations for each one, specific to the United Kingdom.


Biomedical Research , Brain Neoplasms , Adult , Humans , United Kingdom
3.
Front Neurol ; 15: 1358531, 2024.
Article En | MEDLINE | ID: mdl-38481938

Brain tumours reduce life expectancy for an average of 20 years per patient, the highest of any cancer. A third of brain tumour patients visit their GP at least five times before diagnosis and many of those are diagnosed late through emergency departments. A possible solution to this challenge is to utilise a "liquid biopsy" blood test designed for circulating tumour cells (CTCs). Such a test could be applied at a primary healthcare centre, contributing to informed decision making for diagnostic imaging referrals. Furthermore, it could also be applied at secondary health care centres for the ongoing monitoring of disease recurrence. There is increased interest in CTC enrichment methods as a potential approach for faster diagnosis and monitoring of disease progression. The aim of this review to compare four CTC enrichment methods - OncoQuick®, Screen Cell®, pluriBead® and Cell Search® - with the objective of identifying a suitable method for application in the clinical setting for the isolation of CTCs from glioblastomas.

4.
Crit Rev Oncol Hematol ; 196: 104288, 2024 Apr.
Article En | MEDLINE | ID: mdl-38331301

BACKGROUND: Recent evidence suggests that PD-1/PD-L1 immunotherapy improves outcomes in patients with brain metastatic non-small cell lung cancer. METHODS: Records were searched electronically on MEDLINE, Embase and BIOSIS. Hazard ratios and their 95% confidence intervals for overall survival and progression free survival, and treatment-related adverse events data were extracted. Risk of bias was assessed in included studies using the Cochrane Collaboration's revised tool to assess risk of bias in randomized trials. RESULTS: PD-1/PD-L1 immunotherapy increased overall survival by 33% and progression free survival by 47% compared with chemotherapy. Two studies had a high risk of bias. Treatment-related adverse events were reported in 95%, 89% and 65% of patients receiving chemoimmunotherapy,chemotherapy and single agent immunotherapy, respectively. CONCLUSION: PD-1/PD-L1 inhibitors alone or in addition to chemotherapy increase overall and progression free survival when compared with chemotherapy alone. Chemoimmunotherapy and chemotherapy patients experienced the most treatment-related adverse events.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , B7-H1 Antigen , Immunotherapy/adverse effects , Brain/pathology
5.
BMJ Open ; 14(2): e072026, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38336454

OBJECTIVES: Previous studies have suggested that fibrates and glitazones may have a role in brain tumour prevention. We examined if there is support for these observations using primary care records from the UK Clinical Practice Research Datalink (CPRD). DESIGN: We conducted two nested case-control studies using primary and secondary brain tumours identified within CPRD between 2000 and 2016. We selected cases and controls among the population of individuals who had been treated with any anti-diabetic or anti-hyperlipidaemic medication to reduce confounding by indication. SETTING: Adults older than 18 years registered with a general practitioner in the UK contributing data to CPRD. RESULTS: We identified 7496 individuals with any brain tumour (4471 primary; 3025 secondary) in total. After restricting cases and controls to those prescribed any anti-diabetic or anti-hyperlipidaemic medication, there were 1950 cases and 7791 controls in the fibrate and 480 cases with 1920 controls in the glitazone analyses. Longer use of glitazones compared with all other anti-diabetic medications was associated with a reduced risk of primary (adjusted OR (aOR) 0.89 per year, 95% CI 0.80 to 0.98), secondary (aOR 0.87 per year, 95% CI 0.77 to 0.99) or combined brain tumours (aOR 0.88 per year, 95% CI 0.81 to 0.95). There was little evidence that fibrate exposure was associated with risk of either primary or secondary brain tumours. CONCLUSIONS: Longer exposure to glitazones was associated with reduced primary and secondary brain tumour risk. Further basic science and population-based research should explore this finding in greater detail, in terms of replication and mechanistic studies.


Brain Neoplasms , Diabetes Mellitus , Hyperlipidemias , Neoplasms, Second Primary , Thiazolidinediones , Adult , Humans , Hyperlipidemias/complications , Hyperlipidemias/drug therapy , Case-Control Studies , Fibric Acids/therapeutic use , Thiazolidinediones/therapeutic use , United Kingdom/epidemiology
6.
Acta Neuropathol Commun ; 11(1): 198, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38102708

Meningiomas are the most common intracranial brain tumours. These tumours are heterogeneous and encompass a wide spectrum of clinical aggressivity. Treatment options are limited to surgery and radiotherapy and have a risk of post-operative morbidities and radiation neurotoxicity, reflecting the need for new therapies. Three-dimensional (3D) patient-derived cell culture models have been shown to closely recapitulate in vivo tumour biology, including microenvironmental interactions and have emerged as a robust tool for drug development. Here, we established a novel easy-to-use 3D patient-derived meningioma spheroid model using a scaffold-free approach. Patient-derived meningioma spheroids were characterised and compared to patient tissues and traditional monolayer cultures by histology, genomics, and transcriptomics studies. Patient-derived meningioma spheroids closely recapitulated morphological and molecular features of matched patient tissues, including patient histology, genomic alterations, and components of the immune microenvironment, such as a CD68 + and CD163 + positive macrophage cell population. Comprehensive transcriptomic profiling revealed an increase in epithelial-to-mesenchymal transition (EMT) in meningioma spheroids compared to traditional monolayer cultures, confirming this model as a tool to elucidate EMT in meningioma. Therefore, as proof of concept study, we developed a treatment strategy to target EMT in meningioma. We found that combination therapy using the MER tyrosine kinase (MERTK) inhibitor UNC2025 and the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) effectively decreased meningioma spheroid viability and proliferation. Furthermore, we demonstrated this combination therapy significantly increased the expression of the epithelial marker E-cadherin and had a repressive effect on WHO grade 2-derived spheroid invasion, which is suggestive of a partial reversal of EMT in meningioma spheroids.


Meningeal Neoplasms , Meningioma , Humans , Meningioma/pathology , Cell Culture Techniques/methods , Meningeal Neoplasms/pathology , Tumor Microenvironment
7.
Neurooncol Adv ; 5(1): vdad145, 2023.
Article En | MEDLINE | ID: mdl-38130901

Background: Brain metastases derived from non-small cell lung cancer (NSCLC) represent a significant clinical problem. We aim to characterize the genomic landscape of brain metastases derived from NSCLC and assess clinical actionability. Methods: We searched Embase, MEDLINE, Web of Science, and BIOSIS from inception to 18/19 May 2022. We extracted information on patient demographics, smoking status, genomic data, matched primary NSCLC, and programmed cell death ligand 1 expression. Results: We found 72 included papers and data on 2346 patients. The most frequently mutated genes from our data were EGFR (n = 559), TP53 (n = 331), KRAS (n = 328), CDKN2A (n = 97), and STK11 (n = 72). Common missense mutations included EGFR L858R (n = 80) and KRAS G12C (n = 17). Brain metastases of ever versus never smokers had differing missense mutations in TP53 and EGFR, except for L858R and T790M in EGFR, which were seen in both subgroups. Of the top 10 frequently mutated genes that had primary NSCLC data, we found 37% of the specific mutations assessed to be discordant between the primary NSCLC and brain metastases. Conclusions: To our knowledge, this is the first systematic review to describe the genomic landscape of brain metastases derived from NSCLC. These results provide a comprehensive outline of frequently mutated genes and missense mutations that could be clinically actionable. These data also provide evidence of differing genomic landscapes between ever versus never smokers and primary NSCLC compared to the BM. This information could have important consequences for the selection and development of targeted drugs for these patients.

8.
ACS Appl Mater Interfaces ; 15(38): 44711-44721, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37715711

Dual-emission fluorescence probes that provide high sensitivity are key for biomedical diagnostic applications. Nontoxic carbon dots (CDs) are an emerging alternative to traditional fluorescent probes; however, robust and reproducible synthetic strategies are still needed to access materials with controlled emission profiles and improved fluorescence quantum yields (FQYs). Herein, we report a practical and general synthetic strategy to access dual-emission CDs with FQYs as high as 0.67 and green/blue, yellow/blue, or red/blue excitation-dependent emission profiles using common starting materials such as citric acid, cysteine, and co-dopants to bias the synthetic pathway. Structural and physicochemical analysis using nuclear magnetic resonance, absorbance and fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy in addition to transmission electron and atomic force microscopy (TEM and AFM) is used to elucidate the material's composition which is responsible for the unique observed photoluminescence properties. Moreover, the utility of the probes is demonstrated in the clinical setting by the synthesis of green/blue emitting antibody-CD conjugates which are used for the immunohistochemical staining of human brain tissues of glioblastoma patients, showing detection under two different emission channels.


Quantum Dots , Humans , Quantum Dots/chemistry , Carbon/chemistry , Photoelectron Spectroscopy , Fluorescent Dyes/chemistry , Spectroscopy, Fourier Transform Infrared
9.
Neuro Oncol ; 25(10): 1731-1749, 2023 10 03.
Article En | MEDLINE | ID: mdl-37279174

In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.


Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Pathology, Molecular , Mutation , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , World Health Organization
10.
Front Oncol ; 13: 1163289, 2023.
Article En | MEDLINE | ID: mdl-37265788

Glioma is one of the most common malignant primary brain tumours in adults, of which, glioblastoma is the most prevalent and malignant entity. Glioma is often diagnosed at a later stage of disease progression, which means it is associated with significant mortality and morbidity. Therefore, there is a need for earlier diagnosis of these tumours, which would require sensitive and specific biomarkers. These biomarkers could better predict glioma onset to improve diagnosis and therapeutic options for patients. While liquid biopsies could provide a cheap and non-invasive test to improve the earlier detection of glioma, there is little known on pre-diagnostic biomarkers which predate disease detection. In this review, we examine the evidence in the literature for pre-diagnostic biomarkers in glioma, including metabolomics and proteomics. We also consider the limitations of these approaches and future research directions of pre-diagnostic biomarkers for glioma.

11.
Cancer Med ; 12(13): 14426-14439, 2023 07.
Article En | MEDLINE | ID: mdl-37212470

BACKGROUND: The overall survival of IDH-wildtype glioblastoma patients is poor despite best available treatments. There is an urgent need for new biomarkers to inform more precise disease stratification. Previous studies have identified insulin-like growth factor binding protein-2 (IGFBP-2) as a potential biomarker for glioblastoma diagnosis and therapeutic targeting. Other studies have indicated links between the insulin-like growth factor (IGF) axis and tumorigenic functions of a molecular chaperone glucose related protein of 78 kDa (GRP78). We aimed to interrogate the oncogenic effects of IGFBP-2 and GRP78 in our glioma stem cell (GSC) lines and clinical cohort. METHODS: Immunoblotting, reverse transcription quantitative real-time PCR were used to quantify protein and mRNA levels derived from GSCs and non-malignant neural stem cells (NSCs). Microarray analysis was used to compare the differences in IGFBP-2 (IGFBP-2) and GRP78 (HSPA5) transcript expression between NSCs, GSCs and adult human cortex samples. Immunohistochemistry was used to quantify IGFBP-2 and GRP78 expression in IDH-wildtype glioblastoma tissue sections (n = 92) and clinical implications assessed using survival analysis. Finally, the relationship between IGFBP-2 and GRP78 was further explored molecularly using coimmunoprecipitation. RESULTS: Here, we demonstrate that IGFBP-2 and HSPA5 mRNA is overexpressed in GSCs and NSCs in comparison to non-malignant brain tissue. We also determined a relationship in which G144 and G26 GSCs expressed higher IGFBP-2 protein and mRNA than GRP78, and this was reversed in mRNA isolated from adult human cortex samples. Clinical cohort analysis revealed that Glioblastomas with high IGFBP-2 protein expression paired with low GRP78 protein expression were significantly associated with a much shorter survival time (Median = 4 months, p = 0.019) compared with 12-14 months for any other combination of high/low protein expression. CONCLUSIONS: Inverse levels of IGFBP-2 and GRP78 may be adverse clinical prognostic markers in IDH-wildtype glioblastoma. Further interrogation of the mechanistic link between IGFBP-2 and GRP78 may be important for rationalisation of their potential as biomarkers and therapeutic targets.


Glioblastoma , Adult , Humans , Biomarkers , Endoplasmic Reticulum Chaperone BiP , Glioblastoma/pathology , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor I/metabolism , Prognosis , RNA, Messenger/genetics
12.
Sci Rep ; 13(1): 6590, 2023 04 21.
Article En | MEDLINE | ID: mdl-37085538

Genetic evidence suggests glioma risk is altered by leukocyte telomere length, allergic disease (asthma, hay fever or eczema), alcohol consumption, childhood obesity, low-density lipoprotein cholesterol (LDLc) and triglyceride levels. DNA methylation (DNAm) variation influences many of these glioma-related traits and is an established feature of glioma. Yet the causal relationship between DNAm variation with both glioma incidence and glioma risk factors is unknown. We applied a two-step Mendelian randomization (MR) approach and several sensitivity analyses (including colocalization and Steiger filtering) to assess the association of DNAm with glioma risk factors and glioma incidence. We used data from a recently published catalogue of germline genetic variants robustly associated with DNAm variation in blood (32,851 participants) and data from a genome-wide association study of glioma risk (12,488 cases and 18,169 controls, sub-divided into 6191 glioblastoma cases and 6305 non-glioblastoma cases). MR evidence indicated that DNAm at 3 CpG sites (cg01561092, cg05926943, cg01584448) in one genomic region (HEATR3) had a putative association with glioma and glioblastoma risk (False discovery rate [FDR] < 0.05). Steiger filtering provided evidence against reverse causation. Colocalization presented evidence against genetic confounding and suggested that differential DNAm at the 3 CpG sites and glioma were driven by the same genetic variant. MR provided little evidence to suggest that DNAm acts as a mediator on the causal pathway between risk factors previously examined and glioma onset. To our knowledge, this is the first study to use MR to appraise the causal link of DNAm with glioma risk factors and glioma onset. Subsequent analyses are required to improve the robustness of our results and rule out horizontal pleiotropy.


Glioblastoma , Glioma , Pediatric Obesity , Humans , Child , DNA Methylation , Genome-Wide Association Study/methods , Mendelian Randomization Analysis/methods , Pediatric Obesity/genetics , Risk Factors , Glioma/epidemiology , Glioma/genetics , Glioblastoma/genetics
13.
J Pers Med ; 13(3)2023 Mar 13.
Article En | MEDLINE | ID: mdl-36983696

BACKGROUND: Improving intraoperative accuracy with a validated surgical biomarker is important because identifying high-grade areas within a glioma will aid neurosurgical decision-making and sampling. METHODS: We designed a multicentre, prospective surgical cohort study (GALA-BIDD) to validate the presence of visible fluorescence as a pragmatic intraoperative surgical biomarker of suspected high-grade disease within a tumour mass in patients undergoing 5-aminolevulinic acid (5-ALA) fluorescence-guided cytoreductive surgery. RESULTS: A total of 106 patients with a suspected high-grade glioma or malignant transformation of a low-grade glioma were enrolled. Among the 99 patients who received 5-ALA, 89 patients were eligible to assess the correlation of fluorescence with diagnosis as per protocol. Of these 89, 81 patients had visible fluorescence at surgery, and 8 patients had no fluorescence. A total of 80 out of 81 fluorescent patients were diagnosed as high-grade gliomas on postoperative central review with 1 low-grade glioma case. Among the eight patients given 5-ALA who did not show any visible fluorescence, none were high-grade gliomas, and all were low-grade gliomas. Of the seven patients suspected radiologically of malignant transformation of low-grade gliomas and with visible fluorescence at surgery, six were diagnosed with high-grade gliomas, and one had no tissue collected. CONCLUSION: In patients where there is clinical suspicion, visible 5-ALA fluorescence has clinical utility as an intraoperative surgical biomarker of high-grade gliomas and can aid surgical decision-making and sampling. Further studies assessing the use of 5-ALA to assess malignant transformation in all diffuse gliomas may be valuable.

15.
J R Soc Interface ; 19(193): 20220180, 2022 08.
Article En | MEDLINE | ID: mdl-35919979

Brain tumours are the biggest cancer killer in those under 40 and reduce life expectancy more than any other cancer. Blood-based liquid biopsies may aid early diagnosis, prediction and prognosis for brain tumours. It remains unclear whether known blood-based biomarkers, such as glial fibrillary acidic protein (GFAP), have the required sensitivity and selectivity. We have developed a novel in silico model which can be used to assess and compare blood-based liquid biopsies. We focused on GFAP, a putative biomarker for astrocytic tumours and glioblastoma multi-formes (GBMs). In silico modelling was paired with experimental measurement of cell GFAP concentrations and used to predict the tumour volumes and identify key parameters which limit detection. The average GBM volumes of 449 patients at Leeds Teaching Hospitals NHS Trust were also measured and used as a benchmark. Our model predicts that the currently proposed GFAP threshold of 0.12 ng ml-1 may not be suitable for early detection of GBMs, but that lower thresholds may be used. We found that the levels of GFAP in the blood are related to tumour characteristics, such as vasculature damage and rate of necrosis, which are biological markers of tumour aggressiveness. We also demonstrate how these models could be used to provide clinical insight.


Brain Neoplasms , Biomarkers , Brain Neoplasms/pathology , Computer Simulation , Early Diagnosis , Humans , Liquid Biopsy
16.
Nanoscale Adv ; 4(7): 1770-1778, 2022 Mar 29.
Article En | MEDLINE | ID: mdl-35434521

The development of efficient and sensitive tools for the detection of brain cancer in patients is of the utmost importance particularly because many of these tumours go undiagnosed until the disease has advanced and when treatment is less effective. Current strategies employ antibodies (Abs) to detect Glial Fibrillary Acid Protein (GFAP) in tissue samples, since GFAP is unique to the brain and not present in normal peripheral blood, and it relies on fluorescent reporters. Herein we describe a low cost, practical and general method for the labelling of proteins and antibodies with fluorescent carbon dots (CD) to generate diagnostic probes that are robust, photostable and applicable to the clinical setting. The two-step protocol relies on the conjugation of a dibenzocyclooctyne (DBCO)-functionalised CD with azide functionalised proteins by combining amide conjugation and strain promoted alkyne-azide cycloaddition (SPAAC) ligation chemistry. The new class of Ab-CD conjugates developed using this strategy was successfully used for the immunohistochemical staining of human brain tissues of patients with glioblastoma (GBM) validating the approach. Overall, these novel fluorescent probes offer a promising and versatile strategy in terms of costs, photostability and applicability which can be extended to other Abs and protein systems.

17.
Cochrane Database Syst Rev ; 3: CD013387, 2022 03 02.
Article En | MEDLINE | ID: mdl-35233774

BACKGROUND: Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES: To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS: We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA: We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS: We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS: We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS: In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.


Brain Neoplasms , Glioma , Oligodendroglioma , Brain Neoplasms/genetics , Chromosomes, Human, Pair 1/genetics , Cost-Benefit Analysis , Cross-Sectional Studies , DNA , Diagnostic Tests, Routine , Glioma/diagnosis , Glioma/genetics , Humans , State Medicine
18.
Neuropathol Appl Neurobiol ; 48(4): e12790, 2022 06.
Article En | MEDLINE | ID: mdl-34958131

Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic marker and allows prognostication and prediction of the best drug response within IDH-mutant tumours. We performed a Cochrane review and simple economic analysis to establish the most sensitive, specific and cost-effective techniques for determining 1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) test methods were considered as reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH], PCR, real-time PCR, multiplex ligation-dependent probe amplification [MLPA], single nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array CGH, next-generation sequencing [NGS], mass spectrometry and NanoString) showed good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma, irrespective of whether FISH or PCR-based LOH was used as the reference standard. Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. Our findings suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits, considering cost per diagnosis and using FISH as a reference, MLPA was marginally more cost-effective than other tests, although these economic analyses were limited by the range of available parameters, time horizon and data from multiple healthcare organisations.


Brain Neoplasms , Glioma , Oligodendroglioma , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromosome Aberrations , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , Glioma/diagnosis , Glioma/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Oligodendroglioma/diagnosis , Oligodendroglioma/genetics , Oligodendroglioma/pathology
19.
Cancer Res ; 82(2): 235-247, 2022 01 15.
Article En | MEDLINE | ID: mdl-34853069

Deficiency of the tumor suppressor Merlin causes development of schwannoma, meningioma, and ependymoma tumors, which can occur spontaneously or in the hereditary disease neurofibromatosis type 2 (NF2). Merlin mutations are also relevant in a variety of other tumors. Surgery and radiotherapy are current first-line treatments; however, tumors frequently recur with limited treatment options. Here, we use human Merlin-negative schwannoma and meningioma primary cells to investigate the involvement of the endogenous retrovirus HERV-K in tumor development. HERV-K proteins previously implicated in tumorigenesis were overexpressed in schwannoma and all meningioma grades, and disease-associated CRL4DCAF1 and YAP/TEAD pathways were implicated in this overexpression. In normal Schwann cells, ectopic overexpression of HERV-K Env increased proliferation and upregulated expression of c-Jun and pERK1/2, which are key components of known tumorigenic pathways in schwannoma, JNK/c-Jun, and RAS/RAF/MEK/ERK. Furthermore, FDA-approved retroviral protease inhibitors ritonavir, atazanavir, and lopinavir reduced proliferation of schwannoma and grade I meningioma cells. These results identify HERV-K as a critical regulator of progression in Merlin-deficient tumors and offer potential strategies for therapeutic intervention. SIGNIFICANCE: The endogenous retrovirus HERV-K activates oncogenic signaling pathways and promotes proliferation of Merlin-deficient schwannomas and meningiomas, which can be targeted with antiretroviral drugs and TEAD inhibitors.


Anti-Retroviral Agents/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/genetics , Endogenous Retroviruses/metabolism , Meningeal Neoplasms/metabolism , Meningioma/metabolism , Neurilemmoma/metabolism , Neurofibromin 2/metabolism , Viral Proteins/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , HEK293 Cells , Humans , Meningeal Neoplasms/complications , Meningeal Neoplasms/pathology , Meningeal Neoplasms/virology , Meningioma/complications , Meningioma/pathology , Meningioma/virology , Neurilemmoma/complications , Neurilemmoma/pathology , Neurilemmoma/virology , Neurofibromatosis 2/complications , Neurofibromin 2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics
20.
Neuro Oncol ; 24(4): 528-540, 2022 04 01.
Article En | MEDLINE | ID: mdl-34718782

BACKGROUND: Detailed prevalence estimates of BRAFV600 mutations and BRAF inhibitor (BRAFi) treatment responses in V600-mutant glioma will inform trial development. METHODS: Our systematic review analyzed overall prevalence of BRAFV600 mutations in glioma and BRAFi treatment response. RESULTS: Based on 13 682 patients in 182 publications, the prevalence of BRAFV600 in epithelioid glioblastoma (eGBM) was 69% [95% CI: 45-89%]; pleomorphic xanthoastrocytoma (PXA): 56% [48-64%] anaplastic pleomorphic xanthoastrocytoma (aPXA): 38% [23-54%], ganglioglioma (GG): 40% [33-46%], and anaplastic ganglioglioma (aGG): 46% [18-76%]. Prevalence in astroblastoma was 24% [8-43%], desmoplastic infantile astrocytoma (DIA): 16% [0-57%], subependymal giant cell astrocytoma (SEGA): 8% [0-37%], dysembryoplastic neuroepithelial tumor (DNET): 3% [0-11%], diffuse astrocytoma (DA): 3% [0-9%], and pilocytic astrocytoma (PA): 3% [2-5%]. We reviewed 394 V600-mutant gliomas treated with BRAFi from 130 publications. One hundred and twenty-nine pediatric low-grade gliomas showed 4 (3.1%) complete response (CR); 53 (41.1%) partial response (PR); 64 (49.6%) stable disease (SD) and 8 (6.2%) progressive disease (PD). 25 pediatric high-grade gliomas showed CR; PR; SD; PD in 4 (16.0%); 10 (40.0%), 4 (16.0%); and 7 (28.0%) respectively. Thirty-nine adult low-grade gliomas showed CR; PR; SD; PD of 4 (10.3%); 17 (43.6%); 16 (41.0%) and 2 (5.1%) respectively. Ninety-seven adult high-grade gliomas showed CR; PR; SD; PD of 6 (6.2%); 31 (32.0%); 27 (27.8%); and 33 (34.0%) respectively. CONCLUSIONS: BRAFV600 prevalence is highest in eGBM, PXA, aPXA, GG, aGG, and lower in astroblastoma, DIA, SEGA, DNET, DA, and PA. Our data provide the rationale for adjuvant clinical trials of BRAFi in V600-mutant glioma.


Astrocytoma , Brain Neoplasms , Glioma , Adult , Astrocytoma/drug therapy , Astrocytoma/epidemiology , Astrocytoma/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/epidemiology , Brain Neoplasms/genetics , Child , Glioma/drug therapy , Glioma/epidemiology , Glioma/genetics , Humans , Mutation , Prevalence , Proto-Oncogene Proteins B-raf/genetics
...