Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 11(7)2018 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-29986536

RESUMEN

A new route for the preparation of nickel and cobalt substituted spinel cathode materials (LiMn1.95Co0.025Ni0.025O4 and Li1.1Mn1.95Co0.025Ni0.025O4) by freeze-drying of acetate precursors followed by heat treatment was suggested in the present work. The experimental conditions for the preparation single-phase material with small particle size were optimized. Single-phase spinel was formed by low-temperature annealing at 700 °C. For discharge rate 0.2 C, the reversible capacities 109 and 112 mAh g−1 were obtained for LiMn1.95Co0.025Ni0.025O4 and Li1.1Mn1.95Co0.025Ni0.025O4, respectively. A good cycle performance and capacity retention about 90% after 30 cycles at discharge rate 0.2⁻4 C were observed for the materials cycled from 3 to 4.6 V vs. Li/Li⁺. Under the same conditions pure LiMn2O4 cathode materials represent a reversible capacity 94 mAh g−1 and a capacity retention about 80%. Two independent experimental techniques (cyclic voltammetry at different scan rates and electrochemical impedance spectroscopy) were used in order to investigate the diffusion kinetics of lithium. This study shows that the partial substitution of Mn in LiMn2O4 with small amounts of Ni and Co allows the cyclability and the performance of LiMn2O4-based cathode materials to be improved.

2.
Beilstein J Nanotechnol ; 7: 1960-1970, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144544

RESUMEN

Nanocomposites of Li1.4Ni0.5Mn0.5O2+x and amorphous carbon were obtained by the pyrolysis of linear and cross-linked poly(vinyl alcohol) (PVA) in presence of Li1.4Ni0.5Mn0.5O2+x . In the case of linear PVA, the formation of nanostructured carbon coatings on Li1.4Ni0.5Mn0.5O2+x particles is observed, while for cross-linked PVA islands of mesoporous carbon are located on the boundaries of Li1.4Ni0.5Mn0.5O2+x particles. The presence of the carbon framework leads to a decrease of the polarization upon cycling and of the charge transfer resistance and to an increase in the apparent Li+ diffusion coefficient from 10-16 cm2·s-1 (pure Li1.4Ni0.5Mn0.5O2+x ) to 10-13 cm2·s-1. The nanosized carbon coatings also reduce the deep electrochemical degradation of Li1.4Ni0.5Mn0.5O2+x during electrochemical cycling. The nanocomposite obtained by the pyrolysis of linear PVA demonstrates higher values of the apparent lithium diffusion coefficient, a higher specific capacity and lower values of charge transfer resistance, which can be related to the more uniform carbon coatings and to the significant content of sp2-hybridized carbon detected by XPS and by Raman spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA