Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol Methods ; 529: 113682, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705372

RESUMEN

BACKGROUND: The measurement of antigen-specific serum IgE is common in clinical assessments of type I allergies. However, the interaction between antigens and IgE won't invariably trigger mast cell activation. We previously developed the IgE crosslinking-induced luciferase expression (EXiLE) method using the RS-ATL8 mast cell line; however, the method may not be sensitive enough in some cases. METHODS: In this study, we introduced an NF-AT-regulated luciferase reporter gene into the RBL-2H3 rat mast cell line and expressed a chimeric high-affinity IgE receptor (FcεRI) α chain gene, comprising an extracellular domain from humans and transmembrane/intracellular domains from rats. RESULTS: We generated multiple clones expressing the chimeric receptor. Based on their responsiveness and proliferation, we selected the HuRa-40 clone. This cell line exhibited significantly elevated human α chain expression compared to RS-ATL8 cells, demonstrating a 10-fold enhancement of antigen-specific reactivity. Reproducibility across different batches and operators was excellent. Moreover, we observed a detectable response inhibition by an anti-allergy drugs (omalizumab and cyclosporin A). CONCLUSIONS: HuRa-40 cells-which carry the human-rat chimeric IgE receptor-comprise a valuable reporter cell line for the EXiLE method. Their versatility extends to various applications and facilitates high-throughput screening of anti-allergy drugs.


Asunto(s)
Inmunoglobulina E , Luciferasas , Mastocitos , Receptores de IgE , Receptores de IgE/metabolismo , Receptores de IgE/genética , Receptores de IgE/inmunología , Animales , Humanos , Mastocitos/inmunología , Mastocitos/metabolismo , Ratas , Inmunoglobulina E/inmunología , Luciferasas/genética , Luciferasas/metabolismo , Línea Celular , Genes Reporteros , Reproducibilidad de los Resultados , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo
2.
Biochem Biophys Res Commun ; 508(4): 1162-1167, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30554660

RESUMEN

The family of staphylococcal superantigen-like proteins (SSLs) have a structure similar to bacterial superantigens but exhibit no superantigenic activity. These exoproteins have recently been shown to disturb the host immune defense system. One family member, SSL5, was reported to bind to human leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase-9 (MMP-9) and to interfere with leukocyte trafficking. In the present study, we explored human plasma proteins bound by glutathione S-transferase (GST)-tagged recombinant SSL5 (GST-SSL5) and identified plasma protease C1 inhibitor (C1Inh) as a major SSL5-binding protein based on the results of peptide mass fingerprinting analysis with MALDI-TOFMS. GST-SSL5 was found to attenuate the inhibitory activity of recombinant histidine-tagged C1Inh (C1Inh-His) toward complement C1s. We also observed that the treatment of C1Inh-His with neuraminidase markedly decreased its binding to GST-SSL5. Moreover, C1Inh-His produced by Lec2 mutant cells (deficient in sialic acid biosynthesis) showed much lower binding affinity for SSL5 than that produced by the wild-type CHO-K1 cells, as assessed by pull-down assay. These results suggest that SSL5 binds to C1Inh in a sialic acid-dependent fashion and modulates the host immune defense through perturbation of the complement system in association with S. aureus infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína Inhibidora del Complemento C1/metabolismo , Staphylococcus aureus/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo
3.
Int J Mol Sci ; 19(12)2018 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-30544870

RESUMEN

It has recently been recognized that inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), upregulate the secretion of matrix metalloproteinase-9 (MMP-9) from cancer cells and thereby promote peritoneal dissemination. In this study, we found that TNF-α also stimulated peritoneal mesothelial cells to secrete MMP-9 as assessed by zymography. MMP-9 gene expression in mesothelial cells induced by TNF-α was confirmed by quantitative RT-PCR analysis. We then utilized the reconstituted artificial mesothelium, which was composed of a monolayer of mesothelial cells cultured on a Matrigel layer in a Boyden chamber system, to examine the effects of TNF-α on carcinoma cell invasion. The transmigration of MKN1 human gastric carcinoma cells through the reconstituted mesothelium was promoted by TNF-α in a dose-dependent manner. The increased MKN1 cell migration was partially inhibited by the anti-α3 integrin antibody, indicating that the invasion process involves an integrin-dependent mechanism. Finally, we observed that the invasion of MMP-9-knockdown MKN1 cells into Matrigel membranes was potentiated by the exogenous addition of purified proMMP-9. These results suggest that TNF-α-induced MMP-9 secretion from mesothelial cells plays an important role in the metastatic dissemination of gastric cancer.


Asunto(s)
Epitelio/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Peritoneo/patología , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/patología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Ratones , Invasividad Neoplásica , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Monoclon Antib Immunodiagn Immunother ; 37(5): 212-217, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30362929

RESUMEN

Staphylococcus aureus secretes a family of exoproteins structurally homologous to bacterial superantigens, such as toxic shock syndrome toxin-1 (TSST-1), and those exoproteins are thus called staphylococcal superantigen-like proteins (SSLs). Recent studies have revealed that SSLs play roles in evasion of the host defense by disturbing host immune responses. We previously reported that staphylococcal superantigen-like protein 5 (SSL5; a member of the SSL family) inhibited matrix metalloproteinase-9 (MMP-9), which is crucial for leukocyte recruitment to sites of infection. In this study, we established a mouse hybridoma clone (30G5C) producing a monoclonal antibody specific for SSL5. In immunoblotting analysis using recombinant His-tagged SSL1 to SSL14 (His-SSLs), the antibody was found to specifically recognize SSL5 without crossreactivity with other His-SSLs. The antibody bound to the C-terminal region of SSL5 (ß-grasp domain), but did not interfere with the binding of SSL5 to MMP-9, suggesting that this antibody is useful for identification of SSL5-producing S. aureus and screening for inhibitors of the SSL5/MMP-9 complex formation.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/inmunología , Staphylococcus aureus/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Toxinas Bacterianas/inmunología , Enterotoxinas/inmunología , Humanos , Ratones , Unión Proteica , Staphylococcus aureus/patogenicidad , Superantígenos/inmunología
5.
Microbiol Immunol ; 62(3): 168-175, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29328525

RESUMEN

Staphylococcal superantigen-like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P-selectin glycoprotein ligand-1 (PSGL-1) and matrix metalloproteinase (MMP)-9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid-containing glycans of MMP-9, but the roles of sialic acids in the interaction between SSL5 and MMP-9 are still controversial. In the present study, we prepared recombinant glutathione S-transferase-tagged SSL5 (GST-SSL5) and analyzed its binding capacity to MMP-9 by pull-down assay after various modifications of its carbohydrate moieties. We observed that GST-SSL5 specifically bound to MMP-9 from a human monocytic leukemia cell line (THP-1 cells) and inhibited its enzymatic activity in a concentration-dependent manner. After MMP-9 was treated with neuraminidase, its binding activity towards GST-SSL5 was markedly decreased. Furthermore, recombinant MMP-9 produced by sialic acid-deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild-type CHO-K1 cells. Treatment of MMP-9 with PNGase F to remove N-glycan resulted in no significant change in the GST-SSL5/MMP-9 interaction. In contrast, the binding of GST-SSL5 to MMP-9 secreted from THP-1 cells cultured in the presence of an inhibitor for the biosynthesis of O-glycan (benzyl-GalNAc) was weaker than the binding of GST-SSL5 to MMP-9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid-containing O-glycans of MMP-9 for the interaction of MMP-9 with GST-SSL5.


Asunto(s)
Proteínas Bacterianas/metabolismo , Unión Competitiva , Metaloproteinasa 9 de la Matriz/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Clonación Molecular , ADN Bacteriano/genética , Activación Enzimática , Pruebas de Enzimas , Humanos , Evasión Inmune , Metaloproteinasa 9 de la Matriz/química , Glicoproteínas de Membrana/metabolismo , Ácido N-Acetilneuramínico/química , Neuraminidasa , Polisacáridos/química , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Superantígenos/genética , Superantígenos/metabolismo , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA