Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1095850, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025643

RESUMEN

Focusing on visible plaques for phage isolation leaves the question if we miss the diversity of non-plaque forming phages. We addressed this question through direct plaque-based isolation by employing the new hosts Brevundimonas pondensis LVF1 and Serratia marcescens LVF3 dsDNA, ssDNA, dsRNA, and ssRNA host-associated metavirome analysis. Of the 25 distinctive dsDNA phage isolates, 14 were associated with Brevundimonas and 11 with Serratia. TEM analysis revealed that 6 were myoviruses, 18 siphoviruses and 1 podovirus, while phages infecting Brevundimonas belonged all to siphoviruses. The associated viromes suggested a higher phage diversity in summer than in winter, and dsDNA phages were the dominant group. Isolation of vB_SmaP-Kaonashi was possible after investigating the viromes associated with Serratia, demonstrating the great potential of accompanying host-associated metavirome analysis. The ssDNA virome analysis showed that the B. pondensis LVF1 host is associated with Microviridae and Inoviridae phages, although none of them were isolated. The results demonstrated that the classical isolation technique is not exhausted, leading to the isolation of new dsDNA phages. It can be further improved by combination with metavirome techniques, which revealed further diversity.

2.
Microorganisms ; 11(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36838271

RESUMEN

Luteibacter is a genus of the Rhodanobacteraceae family. The present study describes a novel species within the genus Luteibacter (EIF3T). The strain was analyzed genomically, morphologically and physiologically. Average nucleotide identity analysis revealed that it is a new species of Luteibacter. In silico analysis indicated two putative prophages (one incomplete, one intact). EIF3T cells form an elliptical morphotype with an average length of 2.0 µm and width of 0.7 µm and multiple flagella at one end. The bacterial strain is an aerobic Gram-negative with optimal growth at 30 °C. EIF3T is resistant towards erythromycin, tetracycline and vancomycin. We propose the name Luteibacter flocculans sp. nov. with EIF3T (=DSM 112537T = LMG 32416T) as type strain. Further, we describe the first known Luteibacter-associated bacteriophage called vB_LflM-Pluto.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA