Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 4(10): 1508-1525, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723306

RESUMEN

The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.


Asunto(s)
Linfoma de Células T Periférico , Linfoma de Células T , Ratones , Animales , Humanos , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Linfoma de Células T/genética , Genes Supresores de Tumor , Acetilcoenzima A/metabolismo , Glucólisis/genética
2.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37489135

RESUMEN

Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection.

3.
Cell Rep ; 42(3): 112153, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36848289

RESUMEN

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Asunto(s)
Ácido Cítrico , Células Th17 , Ratones , Animales , Citratos , Oxidorreductasas , Lípidos , Piruvatos , Mamíferos
4.
Cell Metab ; 35(2): 299-315.e8, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754020

RESUMEN

FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.


Asunto(s)
Sodio , Linfocitos T Reguladores , Humanos , Sodio/metabolismo , Autoinmunidad , Factores de Transcripción Forkhead/metabolismo
5.
Nat Metab ; 4(5): 589-607, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35618940

RESUMEN

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Asunto(s)
Oxidorreductasas , Enfermedad de Parkinson , Proteína Desglicasa DJ-1 , Piruvatos , Linfocitos T Reguladores , Envejecimiento , Animales , Homeostasis , Ratones , Oxidorreductasas/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , Piruvatos/metabolismo , Linfocitos T Reguladores/metabolismo
6.
Nat Commun ; 13(1): 1789, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379825

RESUMEN

The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity.


Asunto(s)
Glutamato-Cisteína Ligasa , Tejido Linfoide , Animales , Linfocitos B , Glutatión/metabolismo , Tejido Linfoide/metabolismo , Ratones , Oxidación-Reducción
7.
Curr Opin Biotechnol ; 68: 193-201, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33422815

RESUMEN

One-carbon metabolism (1CM) supports multiple biological functions, providing 1C units for nucleotide synthesis, epigenetic maintenance, and redox regulation. Although much has been deciphered about the relationship between disruption of 1CM and various diseases, our understanding of 1CM's involvement in the regulation of the immune system is only now evolving. In this review, we summarize key checkpoints of 1CM pathways that govern cellular activities. We also report on recent findings regarding the role of 1CM in T cells and discuss several promising avenues requiring future investigation.


Asunto(s)
Carbono , Linfocitos T , Oxidación-Reducción
8.
Eur J Immunol ; 50(11): 1626-1642, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33067808

RESUMEN

Regulatory T cells (Tregs) are critical for peripheral immune tolerance and homeostasis, and altered Treg behavior is involved in many pathologies, including autoimmunity and cancer. The expression of the transcription factor FoxP3 in Tregs is fundamental to maintaining their stability and immunosuppressive function. Recent studies have highlighted the crucial role that metabolic reprogramming plays in controlling Treg plasticity, stability, and function. In this review, we summarize how the availability and use of various nutrients and metabolites influence Treg metabolic pathways and activity. We also discuss how Treg-intrinsic metabolic programs define and shape their differentiation, FoxP3 expression, and suppressive capacity. Lastly, we explore how manipulating the regulation of Treg metabolism might be exploited in different disease settings to achieve novel immunotherapies.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular/inmunología , Factores de Transcripción Forkhead/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Inmunoterapia/métodos
9.
Cell Metab ; 31(5): 920-936.e7, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32213345

RESUMEN

Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.


Asunto(s)
Glutatión/metabolismo , Serina/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Ratones
10.
Dev Comp Immunol ; 93: 1-10, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30550777

RESUMEN

Neonatal mammals have increased disease susceptibility and sub-optimal vaccine responses. This raises problems in both humans and farm animals. The high prevalence of paratuberculosis in goats and the lack of an effective vaccine against it have a strong impact on the dairy sector, and calls for vaccines optimized for the neonatal immune system. We characterized the composition of the T-cell pool in neonatal kids and adult goats and quantified their turnover rates using in vivo deuterium labelling. From birth to adulthood, CD4+ T-cells were the predominant subset in the thymus and lymph nodes, while spleen and bone marrow contained mainly CD8+ lymphocytes. In blood, CD4+ T-cells were the predominant subset during the neonatal period, while CD8+ T-cells predominated in adults. We observed that thymic mass and cellularity increased during the first 5 months after birth, but decreased later in life. Deuterium labelling revealed that T-cell turnover rates in neonatal kids are considerably higher than in adult animals.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Cabras/inmunología , Paratuberculosis/epidemiología , Paratuberculosis/inmunología , Factores de Edad , Animales , Animales Recién Nacidos , Células de la Médula Ósea/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Deuterio/química , Susceptibilidad a Enfermedades/inmunología , Femenino , Marcaje Isotópico , Ganglios Linfáticos/citología , Bazo/citología , Timo/citología , Vacunas contra la Tuberculosis/inmunología
11.
Mol Cell Biol ; 24(22): 9920-9, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15509794

RESUMEN

Complex and hybrid N-glycans contain sugar residues that have been implicated in fertilization, compaction of the embryo, and implantation. Inactivation of the Mgat1 gene responsible for their synthesis is embryonic lethal, but homozygous mutant blastocysts are phenotypically normal due to the presence of maternal Mgat1 gene transcripts. To identify roles for complex and hybrid N-glycans in oogenesis and preimplantation development, the Mgat1 gene in oocytes was deleted by using a ZP3Cre recombinase transgene. All mutant oocytes had an altered zona pellucida (ZP) that was thinner than the control ZP, and they did not possess complex N-glycans but contained ZP1, ZP2, and ZP3 glycoproteins. Mutant eggs were fertilized, all embryos implanted, and heterozygotes developed to birth. However, mutant females had decreased fertility, yielded fewer eggs after stimulation with gonadotropins, and produced a reduced number of preimplantation embryos and less progeny than controls. About 25% of embryonic day 3.5 (E3.5) embryos derived from mutant eggs were severely retarded in development, even when they were heterozygous and expressed complex N-glycans. Thus, a proportion of Mgat1(-)(/)(-) oocytes were developmentally compromised. Surprisingly, mutant eggs also gave rise to Mgat1(-)(/)(-) embryos that developed normally, implanted, and progressed to E9.5. Therefore, complex or hybrid N-glycans are required at some stage of oogenesis for the generation of a developmentally competent oocyte, but fertilization, blastogenesis, and implantation may proceed in their absence.


Asunto(s)
Aciltransferasas/deficiencia , Aciltransferasas/genética , Oocitos/metabolismo , Oogénesis/fisiología , Polisacáridos/metabolismo , Aciltransferasas/fisiología , Animales , Secuencia de Bases , Blastocisto/metabolismo , ADN/genética , Implantación del Embrión , Femenino , Fertilización/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , N-Acetilglucosaminiltransferasas , Oogénesis/genética , Polisacáridos/deficiencia , Embarazo , Zona Pelúcida/metabolismo
12.
J Biol Chem ; 277(34): 30535-42, 2002 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-12052837

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins are synthesized on membrane-bound ribosomes, translocated across the endoplasmic reticulum membrane, and GPI-anchored by GPI transamidase (GPIT). GPIT is a minimally heterotetrameric membrane protein complex composed of Gaa1, Gpi8, PIG-S and PIG-T. We describe structure-function analyses of Gaa1, the most hydrophobic of the GPIT subunits, with the aim of assigning a functional role to the different sequence domains of the protein. We generated epitope-tagged Gaa1 mutants and analyzed their membrane topology, subcellular distribution, complex-forming capability, and ability to restore GPIT activity in Gaa1-deficient cells. We show that (i) detergent-extracted, Gaa1-containing GPIT complexes sediment unexpectedly rapidly at approximately 17 S, (ii) Gaa1 is an endoplasmic reticulum-localized membrane glycoprotein with a cytoplasmically oriented N terminus and a lumenally oriented C terminus, (iii) elimination of C-terminal transmembrane segments allows Gaa1 to interact with other GPIT subunits but renders the resulting GPIT complex nonfunctional, (iv) interaction between Gaa1 and other GPIT subunits occurs via the large lumenal domain of Gaa1 located between the first and second transmembrane segments, and (v) the cytoplasmic N terminus of Gaa1 is not required for formation of a functional GPIT complex but may act as a membrane-sorting determinant directing Gaa1 and associated GPIT subunits to an endoplasmic reticulum membrane domain.


Asunto(s)
Aciltransferasas/química , Glicoproteínas de Membrana/química , Aciltransferasas/fisiología , Animales , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/fisiología , Pruebas de Precipitina , Subunidades de Proteína , Conejos , Relación Estructura-Actividad , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...