Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Adv Sci (Weinh) ; 10(29): e2207440, 2023 Oct.
Article En | MEDLINE | ID: mdl-37712117

Large-area single-crystalline thin films of n-type organic semiconductors (OSCs) fabricated via solution-processed techniques are urgently demanded for high-end electronics. However, the lack of molecular designs that concomitantly offer excellent charge-carrier transport, solution-processability, and chemical/thermal robustness for n-type OSCs limits the understanding of fundamental charge-transport properties and impedes the realization of large-area electronics. The benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) π-electron system with phenethyl substituents (PhC2 -BQQDI) demonstrates high electron mobility and robustness but its strong aggregation results in unsatisfactory solubility and solution-processability. In this work, an asymmetric molecular design approach is reported that harnesses the favorable charge transport of PhC2 -BQQDI, while introducing alkyl chains to improve the solubility and solution-processability. An effective synthetic strategy is developed to obtain the target asymmetric BQQDI (PhC2 -BQQDI-Cn ). Interestingly, linear alkyl chains of PhC2 -BQQDI-Cn (n = 5-7) exhibit an unusual molecular mimicry geometry with a gauche conformation and resilience to dynamic disorders. Asymmetric PhC2 -BQQDI-C5 demonstrates excellent electron mobility and centimeter-scale continuous single-crystalline thin films, which are two orders of magnitude larger than that of PhC2 -BQQDI, allowing for the investigation of electron transport anisotropy and applicable electronics.

2.
Adv Mater ; 35(1): e2203541, 2023 Jan.
Article En | MEDLINE | ID: mdl-36281793

Hemispherical image sensors simplify lens designs, reduce optical aberrations, and improve image resolution for compact wide-field-of-view cameras. To achieve hemispherical image sensors, organic materials are promising candidates due to the following advantages: tunability of optoelectronic/spectral response and low-temperature low-cost processes. Here, a photolithographic process is developed to prepare a hemispherical image sensor array using organic thin film photomemory transistors with a density of 308 pixels per square centimeter. This design includes only one photomemory transistor as a single active pixel, in contrast to the conventional pixel architecture, consisting of select/readout/reset transistors and a photodiode. The organic photomemory transistor, comprising light-sensitive organic semiconductor and charge-trapping dielectric, is able to achieve a linear photoresponse (light intensity range, from 1 to 50 W m-2 ), along with a responsivity as high as 1.6 A W-1 (wavelength = 465 nm) for a dark current of 0.24 A m-2 (drain voltage = -1.5 V). These observed values represent the best responsivity for similar dark currents among all the reported hemispherical image sensor arrays to date. A transfer method was further developed that does not damage organic materials for hemispherical organic photomemory transistor arrays. These developed techniques are scalable and are amenable for other high-resolution 3D organic semiconductor devices.

3.
Adv Sci (Weinh) ; 8(24): e2101998, 2021 Dec.
Article En | MEDLINE | ID: mdl-34713616

Increasing the doping level of semiconducting polymer using strong dopants is essential for achieving good electrical conductivity. As for p-dopant, raising the electron affinity of a neutral compound through the dense introduction of electron-withdrawing group has always been the predominant strategy to achieve strong dopant. However, this simple and intuitive strategy faces extendibility, accessibility, and stability issues for further development. Herein, the use of dicationic state of tetraaryl benzidine (TAB2+ ) in conjunction with bis(trifluoromethylsulfonyl)imide anion (TFSI- ) as a strong and atmospherically stable p-dopant (TAB-2TFSI), for which the concept is hinted from a rapid and spontaneous dimerization of radical cation dopant, is demonstrated. TAB-2TFSI possesses a large redox potential such that it would have deteriorated when in contact with H2 O. However, no trace of degradation after 1 year of storage under atmospheric conditions is observed. When doping the state-of-the-art semiconducting polymer with TAB-2TFSI, a high doping level together with significantly enhanced crystallinity is achieved which led to an electrical conductivity as high as 656 S cm-1 . The concept of utilizing charged molecule as a dopant is highly versatile and will potentially accelerate the development of a strong yet stable dopant.

4.
Commun Chem ; 4(1): 155, 2021 Nov 11.
Article En | MEDLINE | ID: mdl-36697635

Benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) is an n-type organic semiconductor that has shown unique multi-fold intermolecular hydrogen-bonding interactions, leading to aggregated structures with excellent charge transports and electron mobility properties. However, the strong intermolecular anchoring of BQQDI presents challenges for fine-tuning the molecular assembly and improving the semiconducting properties. Herein, we report the design and synthesis of two BQQDI derivatives with phenyl- and cyclohexyl substituents (Ph-BQQDI and Cy6-BQQDI), where the two organic semiconductors show distinct molecular assemblies and degrees of intermolecular orbital overlaps. In addition, the difference in their packing motifs leads to strikingly different band structures that give rise to contrasting charge-transport capabilities. More specifically, Cy6-BQQDI bearing bulky substituents exhibits isotropic intermolecular orbital overlaps resulting in equal averaged transfer integrals in both π-π stacking directions, even when dynamic disorders are taken into account; whereas Ph-BQQDI exhibits anisotropic averaged transfer integrals in these directions. As a result, Cy6-BQQDI shows excellent device performances in both single-crystalline and polycrystalline thin-film organic field-effect transistors up to 2.3 and 1.0 cm2 V-1 s-1, respectively.

5.
Sci Rep ; 10(1): 4702, 2020 Mar 13.
Article En | MEDLINE | ID: mdl-32170189

Solution-processed organic thin film transistors (OTFTs) are an essential building block for next-generation printed electronic devices. Organic semiconductors (OSCs) that can spontaneously form a molecular assembly play a vital role in the fabrication of OTFTs. OTFT fabrication processes consist of sequential deposition of functional layers, which inherently brings significant difficulties in realizing ideal properties because underlayers are likely to be damaged by application of subsequent layers. These difficulties are particularly prominent when forming metal contact electrodes directly on an OSC surface, due to thermal damage during vacuum evaporation and the effect of solvents during subsequent photolithography. In this work, we demonstrate a simple and facile technique to transfer contact electrodes to ultrathin OSC films and form an ideal metal/OSC interface. Photolithographically defined metal electrodes are transferred and laminated using a polymeric bilayer thin film. One layer is a thick sacrificial polymer film that makes the overall film easier to handle and is water-soluble for dissolution later. The other is a thin buffer film that helps the template adhere to a substrate electrostatically. The present technique does not induce any fatal damage in the substrate OSC layers, which leads to successful fabrication of OTFTs composed of monolayer OSC films with a mobility of higher than 10 cm2 V-1 s-1, a subthreshold swing of less than 100 mV decade-1, and a low contact resistance of 175 Ω⋅cm. The reproducibility of efficient contact fabrication was confirmed by the operation of a 10 × 10 array of monolayer OTFTs. The technique developed here constitutes a key step forward not only for practical OTFT fabrication but also potentially for all existing vertically stacked organic devices, such as light-emitting diodes and solar cells.

6.
Nature ; 572(7771): 634-638, 2019 08.
Article En | MEDLINE | ID: mdl-31462795

The efficiency with which polymeric semiconductors can be chemically doped-and the charge carrier densities that can thereby be achieved-is determined primarily by the electrochemical redox potential between the π-conjugated polymer and the dopant species1,2. Thus, matching the electron affinity of one with the ionization potential of the other can allow effective doping3,4. Here we describe a different process-which we term 'anion exchange'-that might offer improved doping levels. This process is mediated by an ionic liquid solvent and can be pictured as the effective instantaneous exchange of a conventional small p-type dopant anion with a second anion provided by an ionic liquid. The introduction of optimized ionic salt (the ionic liquid solvent) into a conventional binary donor-acceptor system can overcome the redox potential limitations described by Marcus theory5, and allows an anion-exchange efficiency of nearly 100 per cent. As a result, doping levels of up to almost one charge per monomer unit can be achieved. This demonstration of increased doping levels, increased stability and excellent transport properties shows that anion-exchange doping, which can use an almost infinite selection of ionic salts, could be a powerful tool for the realization of advanced molecular electronics.

7.
Org Lett ; 21(12): 4448-4453, 2019 Jun 21.
Article En | MEDLINE | ID: mdl-31184164

In this paper, the molecular design of the first deep-lowest unoccupied molecular orbital (LUMO) level diimide π-electron core, benzo[ c]thiophene diimide (BTDI), as a novel n-type organic semiconductor was determined. An original synthetic sequence was devised to obtain the target cyclohexyl-BTDI (Cy6-BTDI) derivative. Cy6-BTDI demonstrated completely reversible reduction waves and a stable radical anionic state. Favorable brickwork molecular assembly and two-dimensional charge transport properties of Cy6-BTDI were exhibited in the solid state. As a result, air-stable electron mobilities were obtained from the BTDI organic field-effect transistors under ambient conditions.

8.
Nature ; 539(7629): 411-415, 2016 11 17.
Article En | MEDLINE | ID: mdl-27853213

Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.


Biomimetic Materials/chemistry , Biomimetics , Polymers/chemistry , Transistors, Electronic , Humans , Pliability , Skin , Stress, Mechanical , Wound Healing
9.
J Am Chem Soc ; 138(18): 6020-7, 2016 05 11.
Article En | MEDLINE | ID: mdl-27099162

A self-healing dielectric elastomer is achieved by the incorporation of metal-ligand coordination as cross-linking sites in nonpolar polydimethylsiloxane (PDMS) polymers. The ligand is 2,2'-bipyridine-5,5'-dicarboxylic amide, while the metal salts investigated here are Fe(2+) and Zn(2+) with various counteranions. The kinetically labile coordination between Zn(2+) and bipyridine endows the polymer fast self-healing ability at ambient condition. When integrated into organic field-effect transistors (OFETs) as gate dielectrics, transistors with FeCl2 and ZnCl2 salts cross-linked PDMS exhibited increased dielectric constants compared to PDMS and demonstrated hysteresis-free transfer characteristics, owing to the low ion conductivity in PDMS and the strong columbic interaction between metal cations and the small Cl(-) anions which can prevent mobile anions drifting under gate bias. Fully stretchable transistors with FeCl2-PDMS dielectrics were fabricated and exhibited ideal transfer characteristics. The gate leakage current remained low even after 1000 cycles at 100% strain. The mechanical robustness and stable electrical performance proved its suitability for applications in stretchable electronics. On the other hand, transistors with gate dielectrics containing large-sized anions (BF4(-), ClO4(-), CF3SO3(-)) displayed prominent hysteresis due to mobile anions drifting under gate bias voltage. This work provides insights on future design of self-healing stretchable dielectric materials based on metal-ligand cross-linked polymers.


Metals/chemistry , Polymers/chemistry , 2,2'-Dipyridyl , Chlorides/chemistry , Cross-Linking Reagents , Dimethylpolysiloxanes/chemistry , Elasticity , Electronics , Ferrous Compounds/chemistry , Ligands , Zinc Compounds/chemistry
10.
J Am Chem Soc ; 138(3): 1001-9, 2016 Jan 27.
Article En | MEDLINE | ID: mdl-26717034

Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henry's law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d < 0.5 nm) and preservation of nitrogen moieties, essential for enhanced CO2 affinity. Furthermore, our described work provides a strategy to initiate developments of rationally designed porous conjugated polymer structures and carbon-based materials for various potential applications.

11.
Nat Commun ; 6: 8011, 2015 Aug 24.
Article En | MEDLINE | ID: mdl-26300307

Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.


Color , Materials Testing , Mechanical Phenomena , Skin , Stress, Mechanical , Biomimetics/instrumentation , Electrical Equipment and Supplies , Touch
12.
Nat Commun ; 6: 7955, 2015 Aug 12.
Article En | MEDLINE | ID: mdl-26264528

Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

13.
Adv Mater ; 27(35): 5184-90, 2015 Sep 16.
Article En | MEDLINE | ID: mdl-26247171

Diketopyrrolopyrrole-based semiconducting polymer nanoparticles with high photostability and strong photoacoustic brightness are designed and synthesized, which results in 5.3-fold photoacoustic signal enhancement in tumor xenografts after systemic administration.


Ketones/chemistry , Nanoparticles/chemistry , Photoacoustic Techniques/methods , Polymers/chemistry , Pyrroles/chemistry , Semiconductors , Animals , Cell Transformation, Neoplastic , HeLa Cells , Humans , Mice , Models, Molecular , Molecular Conformation
14.
Chem Commun (Camb) ; 51(73): 13894-7, 2015 Sep 21.
Article En | MEDLINE | ID: mdl-26234770

In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

16.
ACS Appl Mater Interfaces ; 5(11): 4921-9, 2013 Jun 12.
Article En | MEDLINE | ID: mdl-23646879

Resistance switching memory devices with the configuration of poly(ethylene naphthalate)(PEN)/Al/polyimide (PI) blend/Al are reported. The active layers of the PI blend films were prepared from different compositions of poly[4,4'-diamino-4″-methyltriphenylamine-hexafluoroisopropylidenediphthalimide] (PI(AMTPA)) and polycyclic aromatic compounds (coronene or N,N-bis[4-(2-octyldodecyloxy)phenyl]-3,4,9,10-perylenetetracarboxylic diimide (PDI-DO)). The additives of large π-conjugated polycyclic compounds can stabilize the charge transfer complex induced by the applied electric field. Thus, the memory device characteristic changes from the volatile to nonvolatile behavior of flash and write-once-read-many times (WORM) as the additive contents increase in both blend systems. The main differences between these two blend systems are the threshold voltage values and the additive content to change the memory behavior. Due to the stronger accepting ability and higher electron affinity of PDI-DO than those of coronene, the PI(AMTPA):PDI-DO blend based memory devices show a smaller threshold voltage and change the memory behavior in a smaller additive content. Besides, the memory devices fabricated on a flexible PEN substrate exhibit an excellent durability upon the bending conditions. These tunable memory performances of the developed PI/polycyclic aromatic compound blends are advantageous for future advanced memory device applications.

17.
Chem Asian J ; 8(7): 1514-22, 2013 Jul.
Article En | MEDLINE | ID: mdl-23712951

Two new oligoimides, OI(APAP-6FDA) and OI(APAN-6FDA), which consisted of electron-donating N-(4-aminophenyl)-N-phenyl-1-aminopyrene (APAP) or N-(4-aminophenyl)-N-phenyl-1-aminonaphthalene (APAN) moieties and electron-accepting 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) moieties, were designed and synthesized for application in electrical memory devices. Such devices, with the indium tin oxide (ITO)/oligoimide/Al configuration, showed memory characteristics, from high-conductance Ohmic current flow to negative differential resistance (NDR), with corresponding film thicknesses of 38 and 48 nm, respectively. The 48 nm oligoimide film device exhibited NDR electrical behavior, which resulted from the diffusion of Al atoms into the oligoimide layer. On further increasing the film thickness to 85 nm, the OI(APAP-6FDA) film device showed a reproducible nonvolatile "write once read many" (WORM) property with a high ON/OFF current ratio (more than ×10(4)). On the other hand, the device that was based on the 85 nm OI(APAN-6FDA) film exhibited a volatile static random access memory (SRAM) property. The longer conjugation length of the pyrene unit compared to that of a naphthalene unit was considered to be responsible for the different memory characteristics between these two oligoimides. These experimental results suggested that tunable switching behavior could be achieved through an appropriate design of the donor­acceptor oligoimide structure and controllable thickness of the active memory layer.

...