Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38537630

RESUMEN

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Asunto(s)
Diferenciación Celular , Miofibroblastos , Animales , Miofibroblastos/metabolismo , Miofibroblastos/citología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Transducción de Señal , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Intestinos/citología , Músculo Liso/metabolismo , Músculo Liso/citología , Células Madre/citología , Células Madre/metabolismo , Receptor Notch3/metabolismo , Receptor Notch3/genética , Ratones Endogámicos C57BL
2.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36712064

RESUMEN

Intestinal smooth muscles are the workhorse of the digestive system. Inside the millions of finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic vessel, called the lacteal, sending fats into the blood circulation for energy production. Despite this vital function, how villus smooth muscles form, how they assemble alongside lacteals, and how they repair throughout life remain unknown. Here we combine single-cell RNA sequencing of the mouse intestine with quantitative lineage tracing to reveal the mechanisms of formation and differentiation of villus smooth muscle cells. Within the highly regenerative villus, we uncover a local hierarchy of subepithelial fibroblast progenitors that progress to become mature smooth muscle fibers, via an intermediate contractile myofibroblast-like phenotype. This continuum persists in the adult intestine as the major source of renewal of villus smooth muscle cells during adult life. We further found that the NOTCH3-DLL4 signaling axis governs the assembly of villus smooth muscles alongside their adjacent lacteal, and we show that this is necessary for gut absorptive function. Overall, our data shed light on the genesis of a poorly defined class of intestinal smooth muscle and pave the way for new opportunities to accelerate recovery of digestive function by stimulating muscle repair.

3.
STAR Protoc ; 4(2): 102200, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36989110

RESUMEN

Hyaluronan (HA) accumulates in the extracellular matrix to regulate organ morphogenesis. The spatiotemporal dynamics of its production and function are poorly understood due to its instability. Here, we present a protocol using the embryonic chicken intestine as a binary in vivo system for HA visualization and manipulation. We describe steps for pharmacological manipulation and in ovo electroporation to target HA production and accumulation. We then detail HA-binding protein assay to detect HA accumulation and quantification of tissue morphology changes. For complete details on the use and execution of this protocol, please refer to Sivakumar et al. (2018)1 and Sanketi et al. (2022).2.

4.
Science ; 377(6613): eabl3921, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137018

RESUMEN

The vertebrate intestine forms by asymmetric gut rotation and elongation, and errors cause lethal obstructions in human infants. Rotation begins with tissue deformation of the dorsal mesentery, which is dependent on left-sided expression of the Paired-like transcription factor Pitx2. The conserved morphogen Nodal induces asymmetric Pitx2 to govern embryonic laterality, but organ-level regulation of Pitx2 during gut asymmetry remains unknown. We found Nodal to be dispensable for Pitx2 expression during mesentery deformation. Intestinal rotation instead required a mechanosensitive latent transforming growth factor-ß (TGFß), tuning a second wave of Pitx2 that induced reciprocal tissue stiffness in the left mesentery as mechanical feedback with the right side. This signaling regulator, an accelerator (right) and brake (left), combines biochemical and biomechanical inputs to break gut morphological symmetry and direct intestinal rotation.


Asunto(s)
Gastrulación , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Intestinos , Mecanotransducción Celular , Proteína Nodal , Factores de Transcripción , Factor de Crecimiento Transformador beta , Animales , Embrión de Pollo , Gastrulación/genética , Gastrulación/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/farmacología , Intestinos/embriología , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Ratones , Proteína Nodal/genética , Factores de Transcripción/genética , Factores de Transcripción/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Proteína del Homeodomínio PITX2
5.
STAR Protoc ; 3(3): 101524, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35810413

RESUMEN

This protocol describes how to characterize α-Smooth muscle actin (αSMA) spatiotemporal expression during mouse small intestinal development. Specific tissue fixation preserves αSMA arrangement in low αSMA expressing cells that are conventionally undetectable under αSMA immunofluorescent stain due to inappropriate fixative-caused artificial actin depolymerization. Parallel analysis of αSMA carbonylation allows estimation of oxidative damage in gut muscular lineage. This approach improves the molecular specificity offered by commercialized kits that estimate total protein carbonyl level in cell lysates without protein specificity. For complete details on the use and execution of this protocol, please refer to Hu et al. (2021).


Asunto(s)
Actinas , Músculo Liso , Actinas/metabolismo , Animales , Animales Recién Nacidos , Fijadores/metabolismo , Intestinos , Ratones , Músculo Liso/metabolismo , Estrés Oxidativo
6.
Methods Mol Biol ; 2438: 163-181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147942

RESUMEN

The polarity of cellular components is essential for cellular shape changes, oriented cell migration, and modulating intra- and intercellular mechanical forces. However, many aspects of polarized cell behavior-especially dynamic cell shape changes during the process of morphogenesis-are almost impossible to study in cells cultured in plastic dishes. Avian embryos have always been a treasured model system to study vertebrate morphogenesis for developmental biologists. Avian embryos recapitulate human biology particularly well in the early stages due to their flat disc gastruloids. Since avian embryos can be manipulated in ovo they present paramount opportunities for highly localized targeting of genetic mechanisms during cellular and developmental processes. Here, we review the application of these methods for both gain of function and loss of function of a gene of interest at a specific developmental stage during left-right (LR) asymmetric gut morphogenesis. These tools present a powerful premise to investigate various polarized cellular activities and molecular processes in vivo in a reproducible manner.


Asunto(s)
Polaridad Celular , Vertebrados , Animales , Movimiento Celular , Forma de la Célula , Humanos , Morfogénesis/genética
7.
Methods Mol Biol ; 2438: 183-195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147943

RESUMEN

The use of live imaging is indispensable for advancing our understanding of vascular morphogenesis. Imaging fixed embryos at a series of distinct developmental time points, although valuable, does not reveal the dynamic behavior of cells, as well as their interactions with the underlying ECM. Due to the easy access of chicken embryos to manipulation and high-resolution imaging, this model has been at the origin of key discoveries. In parallel, known through its extensive use in quail-chick chimera studies, the quail embryo is equally poised to genetic manipulations and paramount to direct imaging of transgenic reporter quails. Here we describe ex ovo time-lapse confocal microscopy of transgenic quail embryo slices to image vascular development during gut morphogenesis. This technique is powerful as it allows direct observation of the dynamic endothelial cell behaviors along the left-right (LR) axis of the dorsal mesentery (DM), the major conduit for blood and lymphatic vessels that serve the gut. In combination with in ovo plasmid electroporation and quail-chick transplantation, these methods have allowed us to study the molecular mechanisms underlying blood vessel assembly during the formation of the intestine. Below we describe our protocols for the generation of embryo slices, ex ovo time-lapse imaging of fluorescently labeled cells, and quail-chick chimeras to study the early stages of gut vascular development.


Asunto(s)
Pollos , Codorniz , Animales , Animales Modificados Genéticamente , Embrión de Pollo , Quimera , Embrión de Mamíferos , Morfogénesis
8.
Cell Rep ; 37(8): 110030, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818545

RESUMEN

Intestinal lacteals are essential lymphatic channels for absorption and transport of dietary lipids and drive the pathogenesis of debilitating metabolic diseases. However, organ-specific mechanisms linking lymphatic dysfunction to disease etiology remain largely unknown. In this study, we uncover an intestinal lymphatic program that is linked to the left-right (LR) asymmetric transcription factor Pitx2. We show that deletion of the asymmetric Pitx2 enhancer ASE alters normal lacteal development through the lacteal-associated contractile smooth muscle lineage. ASE deletion leads to abnormal muscle morphogenesis induced by oxidative stress, resulting in impaired lacteal extension and defective lymphatic system-dependent lipid transport. Surprisingly, activation of lymphatic system-independent trafficking directs dietary lipids from the gut directly to the liver, causing diet-induced fatty liver disease. Our study reveals the molecular mechanism linking gut lymphatic function to the earliest symmetry-breaking Pitx2 and highlights the important relationship between intestinal lymphangiogenesis and the gut-liver axis.


Asunto(s)
Grasas de la Dieta/metabolismo , Proteínas de Homeodominio/metabolismo , Intestinos/metabolismo , Factores de Transcripción/metabolismo , Animales , Transporte Biológico , Duodeno/metabolismo , Femenino , Proteínas de Homeodominio/genética , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/fisiología , Lípidos/fisiología , Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Masculino , Ratones , Transducción de Señal , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
9.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G668-G681, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643097

RESUMEN

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium. We used flow cytometry and fluorescence-activated cell sorting with multiple reporter mouse models to isolate intestinal stem cells, enterocytes, goblet cells, Paneth cells, enteroendocrine cells, tuft cells, and secretory progenitors. We then subjected these cell populations to small RNA-sequencing. The resulting atlas revealed highly enriched microRNA markers for almost every major cell type (https://sethupathy-lab.shinyapps.io/SI_miRNA/). Several of these lineage-enriched microRNAs (LEMs) were observed to be embedded in annotated host genes. We used chromatin-run-on sequencing to determine which of these LEMs are likely cotranscribed with their host genes. We then performed single-cell RNA-sequencing to define the cell type specificity of the host genes and embedded LEMs. We observed that the two most enriched microRNAs in secretory progenitors are miR-1224 and miR-672, the latter of which we found is deleted in hominin species. Finally, using several in vivo models, we established that miR-152 is a Paneth cell-specific microRNA.NEW & NOTEWORTHY In this study, first, microRNA atlas (and searchable web server) across all major small intestinal epithelial cell types is presented. We have demonstrated microRNAs that uniquely mark several lineages, including enteroendocrine and tuft. Identification of a key marker of mouse secretory progenitor cells, miR-672, which we show is deleted in humans. We have used several in vivo models to establish miR-152 as a specific marker of Paneth cells, which are highly understudied in terms of microRNAs.


Asunto(s)
Linaje de la Célula , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , MicroARNs/genética , Transcriptoma , Animales , Biomarcadores/metabolismo , Separación Celular , Células Cultivadas , Biología Computacional , Perros , Femenino , Citometría de Flujo , Mucosa Intestinal/citología , Intestino Delgado/citología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Organoides , RNA-Seq , Análisis de la Célula Individual
10.
Cell Mol Gastroenterol Hepatol ; 9(3): 447-464, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31756561

RESUMEN

BACKGROUND & AIMS: The enteroendocrine cell (EEC) lineage is important for intestinal homeostasis. It was recently shown that EEC progenitors contribute to intestinal epithelial growth and renewal, but the underlying mechanisms remain poorly understood. MicroRNAs are under-explored along the entire EEC lineage trajectory, and comparatively little is known about their contributions to intestinal homeostasis. METHODS: We leverage unbiased sequencing and eight different mouse models and sorting methods to identify microRNAs enriched along the EEC lineage trajectory. We further characterize the functional role of EEC progenitor-enriched miRNA, miR-7, by in vivo dietary study as well as ex vivo enteroid in mice. RESULTS: First, we demonstrate that miR-7 is highly enriched across the entire EEC lineage trajectory and is the most enriched miRNA in EEC progenitors relative to Lgr5+ intestinal stem cells. Next, we show in vivo that in EEC progenitors miR-7 is dramatically suppressed under dietary conditions that favor crypt division and suppress EEC abundance. We then demonstrate by functional assays in mouse enteroids that miR-7 exerts robust control of growth, as determined by budding (proxy for crypt division), EdU and PH3 staining, and likely regulates EEC abundance also. Finally, we show by single-cell RNA sequencing analysis that miR-7 regulates Xiap in progenitor/stem cells and we demonstrate in enteroids that the effects of miR-7 on mouse enteroid growth depend in part on Xiap and Egfr signaling. CONCLUSIONS: This study demonstrates for the first time that EEC progenitor cell-enriched miR-7 is altered by dietary perturbations and that it regulates growth in enteroids via intact Xiap and Egfr signaling.


Asunto(s)
Células Enteroendocrinas/fisiología , Proteínas Inhibidoras de la Apoptosis/genética , Mucosa Intestinal/fisiología , MicroARNs/metabolismo , Células Madre/fisiología , Animales , Linaje de la Célula/genética , Proliferación Celular/genética , Células Cultivadas , Biología Computacional , Receptores ErbB/metabolismo , Conducta Alimentaria/fisiología , Femenino , Proteínas Inhibidoras de la Apoptosis/metabolismo , Mucosa Intestinal/citología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Organoides , Cultivo Primario de Células , RNA-Seq , Transducción de Señal/genética , Análisis de la Célula Individual
11.
Dev Cell ; 47(6): 680-681, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562506

RESUMEN

The leading cause of death worldwide is disease of the coronary arteries, the vessels that nourish the heart muscle. However, mechanisms that control their development and possible regeneration remain unknown. Recent work is challenging current dogma of coronary artery origins and illuminating key programs that govern coronary artery formation.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiología , Animales , Diferenciación Celular/fisiología , Corazón/crecimiento & desarrollo , Humanos , Miocardio/citología , Miocardio/metabolismo , Neovascularización Fisiológica/fisiología , Organogénesis/fisiología , Venas/crecimiento & desarrollo
12.
Dev Cell ; 46(5): 533-551.e5, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30174180

RESUMEN

For many years, biologists have focused on the role of Pitx2, expressed on the left side of developing embryos, in governing organ laterality. Here, we identify a different pathway during left-right asymmetry initiated by the right side of the embryo. Surprisingly, this conserved mechanism is orchestrated by the extracellular glycosaminoglycan, hyaluronan (HA) and is independent of Pitx2 on the left. Whereas HA is normally synthesized bilaterally as a simple polysaccharide, we show that covalent modification of HA by the enzyme Tsg6 on the right triggers distinct cell behavior necessary to drive the conserved midgut rotation and to pattern gut vasculature. HA disruption in chicken and Tsg6-/- mice results in failure to initiate midgut rotation and perturbs vascular development predisposing to midgut volvulus. Our study leads us to revise the current symmetry-breaking paradigm in vertebrates and demonstrates how enzymatic modification of HA matrices can execute the blueprint of organ laterality.


Asunto(s)
alfa-Globulinas/fisiología , Moléculas de Adhesión Celular/fisiología , Sistema Digestivo/fisiopatología , Embrión de Mamíferos/fisiología , Lateralidad Funcional/fisiología , Ácido Hialurónico/metabolismo , Animales , Tipificación del Cuerpo , Embrión de Pollo , Pollos , Embrión de Mamíferos/citología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
13.
J Cell Biol ; 217(9): 2987-3005, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30061107

RESUMEN

The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.


Asunto(s)
Forma de la Célula/fisiología , Tracto Gastrointestinal/embriología , Corazón/embriología , Riñón/embriología , Pulmón/embriología , Organogénesis/fisiología , Animales , Anomalías Congénitas/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Transcripción Genética/genética
14.
Dev Dyn ; 245(3): 189, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26708750
15.
Cell Rep ; 13(2): 337-49, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26411685

RESUMEN

Expression of Pitx2 on the left side of the embryo patterns left-right (LR) organs including the dorsal mesentery (DM), whose asymmetric cell behavior directs gut looping. Despite the importance of organ laterality, chromatin-level regulation of Pitx2 remains undefined. Here, we show that genes immediately neighboring Pitx2 in chicken and mouse, including a long noncoding RNA (Pitx2 locus-asymmetric regulated RNA or Playrr), are expressed on the right side and repressed by Pitx2. CRISPR/Cas9 genome editing of Playrr, 3D fluorescent in situ hybridization (FISH), and variations of chromatin conformation capture (3C) demonstrate that mutual antagonism between Pitx2 and Playrr is coordinated by asymmetric chromatin interactions dependent on Pitx2 and CTCF. We demonstrate that transcriptional and morphological asymmetries driving gut looping are mirrored by chromatin architectural asymmetries at the Pitx2 locus. We propose a model whereby Pitx2 auto-regulation directs chromatin topology to coordinate LR transcription of this locus essential for LR organogenesis.


Asunto(s)
Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Mucosa Intestinal/metabolismo , ARN Largo no Codificante/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Embrión de Pollo , Cromatina/química , Sitios Genéticos , Intestinos/embriología , Ratones , Datos de Secuencia Molecular , Morfogénesis , Proteínas Represoras/genética , Proteína del Homeodomínio PITX2
16.
Dev Cell ; 31(6): 690-706, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25482882

RESUMEN

The dorsal mesentery (DM) is the major conduit for blood and lymphatic vessels in the gut. The mechanisms underlying their morphogenesis are challenging to study and remain unknown. Here we show that arteriogenesis in the DM begins during gut rotation and proceeds strictly on the left side, dependent on the Pitx2 target gene Cxcl12. Although competent Cxcr4-positive angioblasts are present on the right, they fail to form vessels and progressively emigrate. Surprisingly, gut lymphatics also initiate in the left DM and arise only after-and dependent on-arteriogenesis, implicating arteries as drivers of gut lymphangiogenesis. Our data begin to unravel the origin of two distinct vascular systems and demonstrate how early left-right molecular asymmetries are translated into organ-specific vascular patterns. We propose a dual origin of gut lymphangiogenesis in which prior arterial growth is required to initiate local lymphatics that only subsequently connect to the vascular system.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intestinos/embriología , Sistema Linfático/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Arterias/embriología , Quimiocina CXCL12/metabolismo , Pollos , Proteínas Fluorescentes Verdes/metabolismo , Linfangiogénesis , Vasos Linfáticos/embriología , Mesenterio , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Codorniz , Receptores CXCR4/metabolismo , Proteína del Homeodomínio PITX2
17.
Dev Cell ; 26(6): 629-44, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24091014

RESUMEN

A critical aspect of gut morphogenesis is initiation of a leftward tilt, and failure to do so leads to gut malrotation and volvulus. The direction of tilt is specified by asymmetric cell behaviors within the dorsal mesentery (DM), which suspends the gut tube, and is downstream of Pitx2, the key transcription factor responsible for the transfer of left-right (L-R) information from early gastrulation to morphogenesis. Although Pitx2 is a master regulator of L-R organ development, its cellular targets that drive asymmetric morphogenesis are not known. Using laser microdissection and targeted gene misexpression in the chicken DM, we show that Pitx2-specific effectors mediate Wnt signaling to activate the formin Daam2, a key Wnt effector and itself a Pitx2 target, linking actin dynamics to cadherin-based junctions to ultimately generate asymmetric cell behaviors. Our work highlights how integration of two conserved cascades may be the ultimate force through which Pitx2 sculpts L-R organs.


Asunto(s)
Gastrulación , Proteínas de Homeodominio/metabolismo , Intestinos/embriología , Proteínas de Microfilamentos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Vía de Señalización Wnt , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Animales , Cadherinas/metabolismo , Embrión de Pollo , Proteínas de Homeodominio/genética , Mucosa Intestinal/metabolismo , Mesenterio/embriología , Mesenterio/metabolismo , Mesodermo/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Factores de Transcripción/genética , Proteínas de Unión al GTP rho/genética , Proteína del Homeodomínio PITX2
18.
PLoS One ; 8(3): e58151, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555570

RESUMEN

The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells.


Asunto(s)
Neoplasias Mamarias Experimentales , Animales , Femenino , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/fisiopatología , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Trasplante Homólogo , Células Tumorales Cultivadas
19.
Nature ; 476(7358): 57-62, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21814276

RESUMEN

The developing vertebrate gut tube forms a reproducible looped pattern as it grows into the body cavity. Here we use developmental experiments to eliminate alternative models and show that gut looping morphogenesis is driven by the homogeneous and isotropic forces that arise from the relative growth between the gut tube and the anchoring dorsal mesenteric sheet, tissues that grow at different rates. A simple physical mimic, using a differentially strained composite of a pliable rubber tube and a soft latex sheet is consistent with this mechanism and produces similar patterns. We devise a mathematical theory and a computational model for the number, size and shape of intestinal loops based solely on the measurable geometry, elasticity and relative growth of the tissues. The predictions of our theory are quantitatively consistent with observations of intestinal loops at different stages of development in the chick embryo. Our model also accounts for the qualitative and quantitative variation in the distinct gut looping patterns seen in a variety of species including quail, finch and mouse, illuminating how the simple macroscopic mechanics of differential growth drives the morphology of the developing gut.


Asunto(s)
Intestinos/anatomía & histología , Intestinos/embriología , Modelos Anatómicos , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Embrión de Pollo , Simulación por Computador , Elasticidad , Femenino , Pinzones/embriología , Mesenterio/anatomía & histología , Mesenterio/embriología , Ratones , Codorniz/embriología , Rotación , Goma
20.
Dev Biol ; 325(1): 106-21, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18977342

RESUMEN

The Pea3 Ets transcription factor is overexpressed in breast tumors suggesting that it plays a role in mammary oncogenesis. However, the normal biological function of Pea3 in the mammary gland is not known. Here we report that Pea3 was expressed in the epithelium of the mouse mammary anlagen commensurate with their genesis, and at later times in the nipple and mammary ducts of female embryos. In adult mice Pea3 transcripts peaked at the onset of puberty and early pregnancy, times of active epithelial cell proliferation and differentiation. Pea3 was expressed in all progenitor cap cells and rare body cells of terminal end buds, and in the myoepithelial cells of ducts and alveoli. Analyses of the mammary glands of Pea3-null mice during puberty revealed an increased number of terminal end buds and an increased fraction of proliferating progenitor cells within these structures compared to their wild type littermates. Tissue transplant experiments demonstrated that these phenotypes were intrinsic to the Pea3-null mammary epithelium. During pregnancy, mammary glands isolated from Pea3-null females had impaired alveolar development as revealed by a decreased fraction of alveolar structures. We performed in vitro colony forming assays of mammary epithelial cells and discovered that loss of Pea3 altered the distribution of specific multipotent progenitor cells. Double-immunofluorescence confirmed that multipotential progenitors co-expressing markers of the myoepithelial and luminal epithelial lineage were amplified in the mammary glands of Pea3-null mice by comparison to their wild type counterparts. We propose that Pea3 functions in multipotential progenitors to regulate their lineage-specific differentiation potential.


Asunto(s)
Diferenciación Celular , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/embriología , Células Madre Multipotentes/citología , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Glándulas Mamarias Animales/metabolismo , Ratones , Morfogénesis , Células Madre Multipotentes/metabolismo , Mutación/genética , Embarazo , Proteínas Proto-Oncogénicas c-ets/genética , Maduración Sexual , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA