Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 690
1.
Nat Nanotechnol ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844663

Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.

2.
J Craniofac Surg ; 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38864638

The need to promote calvaria bone healing as a consequence of injury or craniotomy is a major clinical issue. Previous reports tested recombinant human Jagged1 (rhJagged1) treatment for critical-size calvaria defects in the absence of periosteum, and this resulted in significant new bone formation. As the periosteum contributes to healing by serving as a source of progenitor cells, the present study aimed to examine whether significantly more bone is formed when the periosteum is intact for using rhJagged1 to treat critical-size parietal bone defects in mice. Fifteen healthy adult mice, 34 to 65 weeks of age, 26.9 to 48.2 g, were divided into different groups that compared the critical-size defects treated with either phosphate-buffered saline or rhJagged1 protein in either the presence or absence of periosteum. The results indicated that more bone was formed in the presence of periosteum when rhJagged1 is delivered [35% bone volume per tissue volume (BV/TV); P = 0.02] relative to nonperiosteum. Recombinant human Jagged1 protein delivered in the absence of periosteum had the next most new bone formed (25% BV/TV). Defects with phosphate-buffered saline delivered in the absence or presence of periosteum had the least new bone formed (15% and 18% BV/TV, respectively; P = 0.48). The results also show that rhJagged1 does not form ectopic or hypertrophic bone. The usage of rhJagged1 to treat critical-size defects in calvaria is promising clinically, but to maximize clinical efficacy it will require that the periosteum be intact on the noninjured portions of calvaria.

3.
J Food Prot ; : 100312, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38852817

An animal infection model was evaluated on sheep and goats to confirm which species infected with Salmonella enterica serovar Enteritidis C StR (SE13) would provide a consistent and high frequency of Salmonella colonization in lymph nodes (LNs) without causing undue animal morbidity. Sheep and goats (n=5) were intradermally inoculated with Salmonella, post-incubated for 7 days, and euthanized. Superficial cervical, medial iliac, subiliac, mammary, and popliteal LNs were excised from each carcass. Goat LNs had approximately 53% greater Salmonella level compared to sheep. Also, Salmonella was inconsistently recovered from the sheep LNs. Thus, goats were selected to determine the ability of carcass vascular rinsing (with and without bacteriophages) to reduce Salmonella in infected LNs. Goats with similar characteristics were grouped together before being randomly assigned to 3 post-harvest treatments; control (CN, not vascularly rinsed; n=10), vascularly rinsed with a standard Rinse & Chill® solution (RC; 98.5% water and a blend of saccharides and phosphates; n=10), or vascularly rinsed with a standard Rinse & Chill® solution plus the addition of bacteriophages (BP; n=10). Rinse & Chill® system was able to successfully deliver a mean 7.0 log PFU/g to the S. Enteritidis-infected LNs (mean 3.5 log CFU/g). However, neither Rinse & Chill® without bacteriophages nor with bacteriophages caused Salmonella reduction (P>0.05) compared to the non-rinsed goat carcasses.

4.
Health Aff Sch ; 2(5): qxae053, 2024 May.
Article En | MEDLINE | ID: mdl-38783891

Despite the emerging evidence in recent years, successful implementation of clinical genomic sequencing (CGS) remains limited and is challenged by a range of barriers. These include a lack of standardized practices, limited economic assessments for specific indications, limited meaningful patient engagement in health policy decision-making, and the associated costs and resource demand for implementation. Although CGS is gradually becoming more available and accessible worldwide, large variations and disparities remain, and reflections on the lessons learned for successful implementation are sparse. In this commentary, members of the Global Economics and Evaluation of Clinical Genomics Sequencing Working Group (GEECS) describe the global landscape of CGS in the context of health economics and policy and propose evidence-based solutions to address existing and future barriers to CGS implementation. The topics discussed are reflected as two overarching themes: (1) system readiness for CGS and (2) evidence, assessments, and approval processes. These themes highlight the need for health economics, public health, and infrastructure and operational considerations; a robust patient- and family-centered evidence base on CGS outcomes; and a comprehensive, collaborative, interdisciplinary approach.

5.
JCI Insight ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38781018

We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 post fracture. Building upon our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.

6.
ACS Omega ; 9(18): 19904-19910, 2024 May 07.
Article En | MEDLINE | ID: mdl-38737050

Molecular data storage offers the intriguing possibility of higher theoretical density and longer lifetimes than today's electronic memory devices. Some demonstrations have used deoxyribonucleic acid (DNA), but bottlenecks in nucleic acid synthesis continue to make DNA data storage orders of magnitude more expensive than electronic storage media. Additionally, despite its potential for long-term storage, DNA faces durability challenges from environmental degradation. In this work, we demonstrate nongenomic molecular data storage using molecular libraries redirected from chemical waste streams. This approach requires no synthetic effort and can be implemented by using molecules that have a minimal associated cost. While the technique is agnostic about the exact molecular content of its inputs, we confirmed that some sources contained poly fluoroalkyl substances (PFAS), which persist for long periods in the natural environment and could offer extremely durable information storage as well as environmental benefits. These demonstrations provide a perspective on some of the valuable possibilities for nongenomic molecular information systems.

7.
J Genet Couns ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38757439

Familial communication of results and cascade genetic testing (CGT) can extend the benefits of genetic screening beyond the patient to their at-risk relatives. While an increasing number of health systems are offering genetic screening as an elective clinical service, data are limited about how often results are shared and how often results lead to CGT. From 2018 to 2022, the Sanford Health system offered the Sanford Chip, an elective genomic test that included screening for medically actionable predispositions for disease recommended by the American College of Medical Genetics and Genomics for secondary findings disclosure, to its adult primary care patients. We analyzed patient-reported data about familial sharing of results and CGT among patients who received Sanford Chip results at least 1 year previously. Among the patients identified with medically actionable predispositions, 94.6% (53/56) reported disclosing their result to at least one family member, compared with 46.7% (423/906) of patients with uninformative findings (p < 0.001). Of the patients with actionable predispositions, 52.2% (12/23) with a monogenic disease risk and 12.1% (4/33) with a carrier status reported that their relatives underwent CGT. Results suggest that while the identification of monogenic risk during elective genomic testing motivates CGT in many at-risk relatives, there remain untested at-risk relatives who may benefit from future CGT. Findings identify an area that may benefit from increased genetic counseling and the development of tools and resources to encourage CGT for family members.

8.
Am Heart J ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38762090

BACKGROUND: As a mega-biobank linked to a national healthcare system, the Million Veteran Program (MVP) can directly improve the health care of participants. To determine the feasibility and outcomes of returning medically actionable genetic results to MVP participants, the program launched the MVP Return Of Actionable Results (MVP-ROAR) Study, with familial hypercholesterolemia (FH) as an exemplar actionable condition. METHODS: The MVP-ROAR Study consists of a completed single-arm pilot phase and an ongoing randomized clinical trial (RCT), in which MVP participants are recontacted and invited to receive clinical confirmatory gene sequencing testing and a telegenetic counseling intervention. The primary outcome of the RCT is 6-month change in low-density lipoprotein cholesterol (LDL-C) between participants receiving results at baseline and those receiving results after 6 months. RESULTS: The pilot developed processes to identify and recontact participants nationally with probable pathogenic variants in low-density lipoprotein receptor (LDLR) on the MVP genotype array, invite them to clinical confirmatory gene sequencing, and deliver a telegenetic counseling intervention. Among participants in the pilot phase, 8 (100%) had active statin prescriptions after 6 months. Results were shared with 16 first-degree family members. Six-month ΔLDL-C (low-density lipoprotein cholesterol) after the genetic counseling intervention was -37 mg/dL (95% CI: -12 to -61; p=0.03). The ongoing RCT will determine between-arm differences in this primary outcome. CONCLUSION: While underscoring the importance of clinical confirmation of research results, the pilot phase of the MVP-ROAR Study marks a turning point in MVP and demonstrates the feasibility of returning genetic results to participants and their providers. The ongoing RCT will contribute to understanding how such a program might improve patient health care and outcomes.

9.
NPJ Genom Med ; 9(1): 30, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760335

Panel germline testing allows for the efficient detection of deleterious variants for multiple conditions, but the benefits and harms of identifying these variants are not always well understood. We present a multi-gene, multi-disease aggregate utility formula that allows the user to consider adding or removing each gene in a panel based on variant frequency, estimated penetrances, and subjective disutilities for testing positive but not developing the disease and testing negative but developing the disease. We provide credible intervals for utility that reflect uncertainty in penetrance estimates. Rare, highly penetrant deleterious variants tend to contribute positive net utilities for a wide variety of user-specified disutilities, even when accounting for parameter estimation uncertainty. However, the clinical utility of deleterious variants with moderate, uncertain penetrance depends more on assumed disutilities. The decision to include a gene on a panel depends on variant frequency, penetrance, and subjective utilities and should account for uncertainties around these factors.

10.
Aquat Toxicol ; 271: 106908, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608566

Short chain per- and polyfluoroalkyl substances (PFAS), including hexafluoropropylene oxide dimer acid (GenX) and perfluorobutane sulfonate (PFBS), are replacement chemicals for environmentally persistent, long-chain PFAS. Although GenX and PFBS have been detected in surface and ground water worldwide, few studies provide information on the metabolic alterations or risks associated with their exposures. In this study, larval zebrafish were used to investigate the toxicity of early-life exposure to GenX or PFBS. Zebrafish were chronically exposed from 4 h post-fertilization (hpf) to 6 days post-fertilization (dpf) to 150 µM GenX or 95.0 µM PFBS. Ultra-high-performance liquid chromatography paired with high-resolution mass spectrometry was used to quantify uptake of GenX and PFBS into zebrafish larvae and perform targeted and untargeted metabolomics. Our results indicate that PFBS was 20.4 % more readily absorbed into the zebrafish larvae compared to GenX. Additionally, PFBS exposure significantly altered 13 targeted metabolites and 21 metabolic pathways, while GenX exposure significantly altered 1 targeted metabolite and 17 metabolic pathways. Exposure to GenX, and to an even greater extent PFBS, resulted in a number of altered metabolic pathways in the amino acid metabolism, with other significant alterations in the carbohydrate, lipid, cofactors and vitamins, nucleotide, and xenobiotics metabolisms. Our results indicate that GenX and PFBS impact the zebrafish metabolome, with implications of global metabolic dysregulation, particularly in metabolic pathways relating to growth and development.


Metabolomics , Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Water Pollutants, Chemical/toxicity , Fluorocarbons/toxicity , Larva/drug effects , Larva/metabolism , Larva/growth & development , Metabolome/drug effects
11.
Transl Anim Sci ; 8: txae042, 2024.
Article En | MEDLINE | ID: mdl-38562214

Penetrating captive bolt (PCB) is the primary method of preslaughter stunning for cattle and is also used for on-farm euthanasia. The objective of this study was to quantify the impact of cooling on the soft tissue thickness, cranial thickness, total tissue thickness, and cross-sectional brain area of cadaver heads collected from mature (> 30 mo of age) dairy cows following the application of a PCB stun in a frontal placement. Hide-on cadaver heads were obtained from culled dairy cows (N = 37) stunned in a frontal location using a handheld PCB device (Jarvis Model PAS-Type C 0.25R Caliber Captive Bolt, Long Bolt) at a commercial slaughter establishment. Following transport to the University of Wisconsin-River Falls, heads were split at midline along the bolt path by a bandsaw and then underwent FRESH, CHILL24, CHILL48, and CHILL72 refrigeration treatments. The FRESH treatment involved images collected immediately after splitting each head, the CHILL24 treatment involved images collected after 24 h of refrigeration, the CHIL48 treatment involved images collected after 48 h of refrigeration, and the CHILL72 treatment involved images collected after 72 h of refrigeration. Measurements of soft tissue thickness, cranial thickness, total tissue thickness, and cross-sectional brain area were recorded for each refrigeration treatment. Soft tissue thickness did not differ caudal to (P = 0.3751) or rostral to (P = 0.2555) the bolt path. Cranial thickness did not differ caudal to (P = 0.9281) or rostral to (P = 0.9051) the bolt path. Total tissue thickness did not differ caudal to (P = 0.9225; FRESH: 24.77 mm, CHILL24: 23.93 mm, CHILL48: 24.27 mm, CHILL72: 42.30, SE: 0.86) or rostral to (P = 0.8931; FRESH: 24.09 mm, CHILL24: 23.99, CHILL48: 24.26, CHILL72: 24.43 mm, SE: 0.79 mm) the bolt path. Cross-sectional brain area was not different (P = 0.0971) between refrigeration treatments (FRESH: 9,829.65 ±â€…163.87 mm2, CHILL24: 10,012.00 ±â€…163.87 mm2, CHILL48: 9,672.43 ±â€…163.87 mm2, CHILL72: 10,235.00 ±â€…166.34 mm2). This study demonstrated that FRESH tissue parameters can be determined from cattle cadaver heads refrigerated for 24, 48, or 72 h.

12.
Biopharm Drug Dispos ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38646776

This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 µg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 µg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.

13.
bioRxiv ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38562830

Over 1,100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. Informed by a variant-to-gene mapping strategy implicating 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci, we executed a single-cell CRISPRi screen in human fetal osteoblast 1.19 cells (hFOBs). The BMD relevance of hFOBs was supported by heritability enrichment from cross-cell type stratified LD-score regression involving 98 cell types grouped into 15 tissues. 24 genes showed perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping revealed that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues that warrant attention in future screens.

14.
JBMR Plus ; 8(5): ziae051, 2024 May.
Article En | MEDLINE | ID: mdl-38686038

Genome wide association study (GWAS)-implicated bone mineral density (BMD) signals have been shown to localize in cis-regulatory regions of distal effector genes using 3D genomic methods. Detailed characterization of such genes can reveal novel causal genes for BMD determination. Here, we elected to characterize the "DNM3" locus on chr1q24, where the long non-coding RNA DNM3OS and the embedded microRNA MIR199A2 (miR-199a-5p) are implicated as effector genes contacted by the region harboring variation in linkage disequilibrium with BMD-associated sentinel single nucleotide polymorphism, rs12041600. During osteoblast differentiation of human mesenchymal stem/progenitor cells (hMSC), miR-199a-5p expression was temporally decreased and correlated with the induction of osteoblastic transcription factors RUNX2 and Osterix. Functional relevance of miR-199a-5p downregulation in osteoblastogenesis was investigated by introducing miR-199a-5p mimic into hMSC. Cells overexpressing miR-199a-5p depicted a cobblestone-like morphological change and failed to produce BMP2-dependent extracellular matrix mineralization. Mechanistically, a miR-199a-5p mimic modified hMSC propagated normal SMAD1/5/9 signaling and expressed osteoblastic transcription factors RUNX2 and Osterix but depicted pronounced upregulation of SOX9 and enhanced expression of essential chondrogenic genes ACAN, COMP, and COL10A1. Mineralization defects, morphological changes, and enhanced chondrogenic gene expression associated with miR-199a-5p mimic over-expression were restored with miR-199a-5p inhibitor suggesting specificity of miR-199a-5p in chondrogenic fate specification. The expression of both the DNM3OS and miR-199a-5p temporally increased and correlated with hMSC chondrogenic differentiation. Although miR-199a-5p overexpression failed to further enhance chondrogenesis, blocking miR-199a-5p activity significantly reduced chondrogenic pellet size, extracellular matrix deposition, and chondrogenic gene expression. Taken together, our results indicate that oscillating miR-199a-5p levels dictate hMSC osteoblast or chondrocyte terminal fate. Our study highlights a functional role of miR-199a-5p as a BMD effector gene at the DNM3 BMD GWAS locus, where patients with cis-regulatory genetic variation which increases miR-199a-5p expression could lead to reduced osteoblast activity.

15.
Environ Sci Technol ; 58(17): 7480-7492, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38639388

Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.


Biotransformation , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Pollutants/metabolism , Fluorocarbons/metabolism
16.
Animals (Basel) ; 14(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38672319

Many indoor-housed cows isolate at calving when given the opportunity, and calving behaviors vary by blind and pen design. The objectives of this study were to determine if cows preferred calving in a visibly separated (blind) or an open area of a group maternity pen, and if there was a preference for the degree of seclusion provided by the blind (50% vs. 100% coverage). Two calving blinds were provided in a group calving pen, and the amount of visibility through the blinds was created using firehoses secured from the top of a metal frame that lined the entire front of the blind (100%) or with every other hose rolled up (50%). Holstein cows and heifers (n = 79) were enrolled into a dynamic group calving pen 21 ± 3 d before calving. Calving location, the difference in blind use prior to calving compared to a baseline period, and social behaviors were recorded using video observation. There was no difference in the number of cows that calved in or outside of a blind (28 vs. 37 calvings, respectively). Cows were more likely to calve in a blind during the day than at night and as the number of cows in the pen increased. For cows who calved in a blind, there was no preference for calving in the 50% or 100% blind (10 vs. 18, respectively). Providing a varied environment for intensively managed cattle can improve their welfare by allowing cows the opportunity to perform natural behaviors and choice over their environment.

17.
Environ Sci Technol ; 58(13): 5646-5669, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38517744

Nanodelivery vehicles (NDVs) are engineered nanomaterials (ENMs) that, within the agricultural sector, have been investigated for their ability to improve uptake and translocation of agrochemicals, control release, or target specific tissues or subcellular compartments. Both inorganic and organic NDVs have been studied for agrochemical delivery in the literature, but research on the latter has been slower to develop than the literature on the former. Since the two classes of nanomaterials exhibit significant differences in surface chemistry, physical deformability, and even colloidal stability, trends that apply to inorganic NDVs may not hold for organic NDVs, and vice versa. We here review the current literature on the uptake, translocation, biotransformation, and cellular and subcellular internalization of organic NDVs in plants following foliar or root administration. A background on nanomaterials and plant physiology is provided as a leveling ground for researchers in the field. Trends in uptake and translocation are examined as a function of NDV properties and compared to those reported for inorganic nanomaterials. Methods for assessing fate and transport of organic NDVs in plants (a major bottleneck in the field) are discussed. We end by identifying knowledge gaps in the literature that must be understood in order to rationally design organic NDVs for precision agrochemical nanodelivery.


Nanostructures , Plants/metabolism , Biological Transport , Agrochemicals/metabolism
18.
Sci Total Environ ; 927: 171883, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38531439

Aqueous film-forming foams (AFFFs) have been extensively used for extinguishing hydrocarbon-fuel fires at military sites, airports, and fire-training areas. Despite being a significant source of per- and polyfluoroalkyl substances (PFAS), our understanding of PFAS occurrence in AFFF formulations and AFFF-impacted environments is limited, as is the impact of microbial transformation on the environment fate of AFFF-derived PFAS. This literature review compiles PFAS concentrations in electrochemical fluorination (ECF)- and fluorotelomer (FT)-based AFFFs and provides an overview of PFAS occurrence in AFFF-impacted environments. Our analysis reveals that AFFF use is a predominant point source of PFAS contamination, including primary precursors (polyfluoroalkyl substances as AFFF components), secondary precursors (polyfluoroalkyl transformation products of primary precursors), and perfluoroalkyl acids (PFAAs). Moreover, there are discrepancies between PFAS concentration profiles in AFFFs and those measured in AFFF-impacted media. For example, primary precursors constitute 52.6 % and 99.5 % of PFAS mass in ECF- and FT-based AFFFs, respectively, whereas they represent only 0.7 % total mass in AFFF-impacted groundwater. Conversely, secondary precursors, which constitute <1 % of PFAS in AFFFs, represent 4.0-27.8 % of PFAS in AFFF-impacted environments. The observed differences in PFAS levels between AFFFs and environmental samples are likely due to in-situ biotransformation processes. Biotransformation rates and pathways reported for AFFF-derived primary and secondary precursors varied among different classes of precursors, consistent with the PFAS occurrence in AFFF-impacted environments. For example, readily biodegradable primary precursors, N-dimethyl ammonio propyl perfluoroalkane sulfonamide (AmPr-FASA) and n:2 fluorotelomer thioether amido sulfonate (n:2 FtTAoS), were rarely detected in AFFF-impacted environments. In contrast, key secondary precursors, perfluoroalkane sulfonamides (FASAs) and n:2 fluorotelomer sulfonate (n:2 FTS), were widely detected, which was attributed to their resistance to biotransformation. Key knowledge gaps and future research priorities are presented to better understand the occurrence, fate, and transport of AFFF-derived PFAS in the environment and to design more effective remediation strategies.

19.
Ann Emerg Med ; 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493375

STUDY OBJECTIVE: In the early months of the coronavirus disease 2019 (COVID-19) pandemic and before vaccine availability, there were concerns that infected emergency department (ED) health care personnel could present a threat to the delivery of emergency medical care. We examined how the pandemic affected staffing levels and whether COVID-19 positive staff were potentially infectious at work in a cohort of US ED health care personnel in 2020. METHODS: The COVID-19 Evaluation of Risks in Emergency Departments (Project COVERED) project was a multicenter prospective cohort study of US ED health care personnel conducted from May to December 2020. During surveillance, health care personnel completed weekly electronic surveys and underwent periodic serology and nasal reverse transcription polymerase chain reaction testing for SARS-CoV-2, and investigators captured weekly data on health care facility COVID-19 prevalence and health care personnel staffing. Surveys asked about symptoms, potential exposures, work attendance, personal protective equipment use, and behaviors. RESULTS: We enrolled 1,673 health care personnel who completed 29,825 person weeks of surveillance. Eighty-nine (5.3%) health care personnel documented 90 (0.3%; 95% confidence interval [CI] 0.2% to 0.4%) person weeks of missed work related to documented or concerns for COVID-19 infection. Health care personnel experienced symptoms of COVID-19 during 1,256 (4.2%) person weeks and worked at least one shift whereas symptomatic during 1,042 (83.0%) of these periods. Seventy-five (4.5%) participants tested positive for SARS-CoV-2 during the surveillance period, including 43 (57.3%) who indicated they never experienced symptoms; 74 (98.7%; 95% CI 90.7% to 99.9%) infected health care personnel worked at least one shift during the initial period of infection, and 71 (94.7%) continued working until laboratory confirmation of their infection. Physician staffing was not associated with the facility or community COVID-19 levels within any time frame studied (Kendall tau's 0.02, 0.056, and 0.081 for no shift, one-week time shift, and 2-week time shift, respectively). CONCLUSIONS: During the first wave of the pandemic, COVID-19 infections in ED health care personnel were infrequent, and the time lost from the workforce was minimal. Health care personnel frequently reported for work while infected with SARS-CoV-2 before laboratory confirmation. The ED staffing levels were poorly correlated with facility and community COVID-19 burden.

20.
bioRxiv ; 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38496546

CD47 is a ubiquitous and pleiotropic cell-surface receptor. Disrupting CD47 enhances injury repair in various tissues but the role of CD47 has not been studied in bone injuries. In a murine closed-fracture model, CD47-null mice showed decreased callus bone volume, bone mineral content, and tissue mineral content as assessed by microcomputed tomography 10 days post-fracture, and increased fibrous volume as determined by histology. To understand the cellular basis for this phenotype, mesenchymal progenitors (MSC) were harvested from bone marrow. CD47-null MSC showed decreased large fibroblast colony formation (CFU-F), significantly less proliferation, and fewer cells in S-phase, although osteoblast differentiation was unaffected. However, consistent with prior research, CD47-null endothelial cells showed increased proliferation relative to WT cells. Similarly, in a murine ischemic fracture model, CD47-null mice showed reduced fracture callus bone volume and bone mineral content relative to WT. Consistent with our in vitro results, in vivo EdU labeling showed decreased cell proliferation in the callus of CD47-null mice, while staining for CD31 and endomucin demonstrated increased endothelial cell mass. Finally, WT mice administered a CD47 morpholino, which blocks CD47 protein production, showed a callus phenotype similar to that of non-ischemic and ischemic fractures in CD47-null mice, suggesting the phenotype was not due to developmental changes in the knockout mice. Thus, inhibition of CD47 during bone healing reduces both non-ischemic and ischemic fracture healing, in part, by decreasing MSC proliferation. Furthermore, the increase in endothelial cell proliferation and early blood vessel density caused by CD47 disruption is not sufficient to overcome MSC dysfunction.

...