Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncogene ; 43(8): 555-565, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030788

RESUMEN

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME that can be targeted therapeutically in cancer.


Asunto(s)
Melanoma , Neoplasias de la Úvea , Masculino , Humanos , Melanoma/genética , Reparación del ADN/genética , ADN , Inestabilidad Genómica , Aneuploidia , Meiosis , Antígenos de Neoplasias/metabolismo
2.
Res Sq ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162820

RESUMEN

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME than can be targeted therapeutically in cancer.

3.
Nat Neurosci ; 23(3): 323-326, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066986

RESUMEN

The presence of active neurogenic niches in adult humans is controversial. We focused attention to the human olfactory neuroepithelium, an extracranial site supplying input to the olfactory bulbs of the brain. Using single-cell RNA sequencing analyzing 28,726 cells, we identified neural stem cell and neural progenitor cell pools and neurons. Additionally, we detailed the expression of 140 olfactory receptors. These data from the olfactory neuroepithelium niche provide evidence that neuron production may continue for decades in humans.


Asunto(s)
Neurogénesis/fisiología , Mucosa Olfatoria/inervación , Mucosa Olfatoria/fisiología , Análisis de la Célula Individual , Adulto , Envejecimiento/fisiología , Humanos , Células-Madre Neurales/fisiología , Neuronas Receptoras Olfatorias/fisiología , Análisis de Secuencia de ARN , Olfato
4.
Stem Cell Reports ; 12(6): 1354-1365, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31155504

RESUMEN

Stem cell-based therapies have been proposed as a strategy to replace damaged tissues, especially in the nervous system. A primary sensory modality, olfaction, is impaired in 12% of the US population, but lacks treatment options. We report here the development of a novel mouse model of inducible hyposmia and demonstrate that purified tissue-specific stem cells delivered intranasally engraft to produce olfactory neurons, achieving recovery of function. Adult mice were rendered hyposmic by conditional deletion of the ciliopathy-related IFT88 gene in the olfactory sensory neuron lineage and following experimentally induced olfactory injury, received either vehicle or stem cell infusion intranasally. Engraftment-derived olfactory neurons were identified histologically, and functional improvements were measured via electrophysiology and behavioral assay. We further explored mechanisms in culture that promote expansion of engraftment-competent adult olfactory basal progenitor cells. These findings provide a basis for translational research on propagating adult tissue-specific sensory progenitor cells and testing their therapeutic potential.


Asunto(s)
Ciliopatías , Células-Madre Neurales , Trastornos del Olfato , Neuronas Receptoras Olfatorias , Olfato , Trasplante de Células Madre , Animales , Bencilatos , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Ciliopatías/terapia , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Células-Madre Neurales/trasplante , Trastornos del Olfato/genética , Trastornos del Olfato/metabolismo , Trastornos del Olfato/patología , Trastornos del Olfato/terapia , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/patología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Int Forum Allergy Rhinol ; 9(9): 993-999, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31251849

RESUMEN

BACKGROUND: Damage to olfactory sensory neurons (OSNs), situated within the neuroepithelium of the olfactory cleft, may be associated with anosmia. Although their direct contact with the nasal airspace make OSNs vulnerable to injury and death, multiple mechanisms maintain epithelium integrity and olfactory function. We hypothesized that BMI1, a polycomb protein found to be enriched in OSNs, may function in neuroprotection. Here, we explored BMI1 function in a mouse model. METHODS: Utilizing a mouse genetic approach to delete Bmi1 selectively in mature OSNs, we investigated changes in OE homeostasis by performing immunohistochemical, biochemical, and functional assays. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunostaining, and electro-olfactograms were used to compare gene expression, cell composition, and olfactory function in OSN-specific BMI1 knockout mice (n = 3 to 5) and controls. Chromatin studies were also performed to identify protein-DNA interactions between BMI1 and its target genes (n = 3). RESULTS: OSN-specific BMI1 knockout led to increased neuron death and basal cell activation. Chromatin studies suggested a mechanism of increased neurodegeneration due to de-repression of a pro-apoptosis gene, p19ARF. Despite the increased turnover, we found that olfactory neuroepithelium thickness and olfactory function remained intact. Our studies also revealed the presence of additional polycomb group proteins that may compensate for the loss of BMI1 in mature OSNs. CONCLUSION: The olfactory neuroepithelium employs multiple mechanisms to maintain epithelial homeostasis. Our findings provide evidence that in a mouse model of BMI1 deletion, the overall integrity and function of the olfactory neuroepithelium are not compromised, despite increased neuronal turnover, reflecting a remarkable reparative capacity to sustain a critical sensory system.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Epidermis/patología , Trastornos del Olfato/patología , Mucosa Olfatoria/patología , Neuronas Receptoras Olfatorias/fisiología , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Animales , Muerte Celular/genética , Proliferación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Modelos Animales de Enfermedad , Represión Epigenética , Humanos , Ratones , Ratones Noqueados , Olfato/genética
6.
Sci Rep ; 8(1): 5797, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643381

RESUMEN

Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play a key role in purinergic signaling in the nervous system in both normal and pathological conditions. In the retina, particularly high levels of Panx1 are found in retinal ganglion cells (RGCs), but the normal physiological function in these cells remains unclear. In this study, we used patch clamp recordings in the intact inner retina to show that evoked currents characteristic of Panx1 channel activity were detected only in RGCs, particularly in the OFF-type cells. The analysis of pattern electroretinogram (PERG) recordings indicated that Panx1 contributes to the electrical output of the retina. Consistently, PERG amplitudes were significantly impaired in the eyes with targeted ablation of the Panx1 gene in RGCs. Under ocular hypertension and ischemic conditions, however, high Panx1 activity permeated cell membranes and facilitated the selective loss of RGCs or stably transfected Neuro2A cells. Our results show that high expression of the Panx1 channel in RGCs is essential for visual function in the inner retina but makes these cells highly sensitive to mechanical and ischemic stresses. These findings are relevant to the pathophysiology of retinal disorders induced by increased intraocular pressure, such as glaucoma.


Asunto(s)
Conexinas/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/fisiología , Animales , Electrorretinografía , Potenciales Evocados Visuales , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp
7.
PLoS One ; 12(11): e0187576, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29107942

RESUMEN

Despite a robust capacity for adult neurogenesis in the olfactory epithelium (OE), olfactory sensory losses are common. Identification of mechanisms regulating adult OE neurogenesis is, therefore, of interest. MicroRNAs (miRNAs) are broadly important in regulating vertebrate neurodevelopment, and are required in embryonic olfactory differentiation. We report here that a panel of miRNAs is differentially expressed by either progenitor or progeny cells in the regenerating mouse OE. Progenitor cells were purified from lesioned OE based on c-Kit expression, and miRNA expression was assayed in c-Kit (+) and c-Kit (-) cell populations. 28 miRNAs were significantly downregulated by at least 4 fold in the c-Kit (+) fraction, which marks the globose basal progenitor cell population. In addition, 10 miRNAs were upregulated in these basal cells. MiR-486, the most strongly downregulated miRNA identified, was further characterized to verify results. MiR-486 expression was confirmed in the c-Kit (-) OE layers using in situ hybridization. As a functional assay, over-expression of miR-486 in purified c-Kit (+) basal cell cultures resulted in a reduction in neurogenesis, consistent with a possible negative feedback regulatory model. Our data provide new insights regarding miRNA expression and function during adult OE neurogenesis, and identify candidate miRNAs warranting further study.


Asunto(s)
MicroARNs/genética , Mucosa Olfatoria/metabolismo , Animales , Células Cultivadas , Regulación hacia Abajo , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Mucosa Olfatoria/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo
8.
Front Cell Neurosci ; 8: 263, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309318

RESUMEN

Pannexin 1 (Panx1) is a high-conductance, voltage-gated channel protein found in vertebrates. Panx1 is widely expressed in many organs and tissues, including sensory systems. In the eye, Panx1 is expressed in major divisions including the retina, lens and cornea. Panx1 is found in different neuronal and non-neuronal cell types. The channel is mechanosensitive and responds to changes in extracellular ATP, intracellular calcium, pH, or ROS/nitric oxide. Since Panx1 channels operate at the crossroad of major signaling pathways, physiological functions in important autocrine and paracrine feedback signaling mechanisms were hypothesized. This review starts with describing in depth the initial Panx1 expression and localization studies fostering functional studies that uncovered distinct roles in processing visual information in subsets of neurons in the rodent and fish retina. Panx1 is expressed along the entire anatomical axis from optical nerve to retina and cornea in glia, epithelial and endothelial cells as well as in neurons. The expression and diverse localizations throughout the eye points towards versatile functions of Panx1 in neuronal and non-neuronal cells, implicating Panx1 in the crosstalk between immune and neural cells, pressure related pathological conditions like glaucoma, wound repair or neuronal cell death caused by ischemia. Summarizing the literature on Panx1 in the eye highlights the diversity of emerging Panx1 channel functions in health and disease.

9.
Front Cell Neurosci ; 8: 266, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309319

RESUMEN

Pannexin 1 (Panx1), the most extensively investigated member of a channel-forming protein family, is able to form pores conducting molecules up to 1.5 kDa, like ATP, upon activation. In the olfactory epithelium (OE), ATP modulates olfactory responsiveness and plays a role in proliferation and differentiation of olfactory sensory neurons (OSNs). This process continuously takes place in the OE, as neurons are replaced throughout the whole lifespan. The recent discovery of Panx1 expression in the OE raises the question whether Panx1 mediates ATP release responsible for modulating chemosensory function. In this study, we analyzed pannexin expression in the OE and a possible role of Panx1 in olfactory function using a Panx1(-/-) mouse line with a global ablation of Panx1. This mouse model has been previously used to investigate Panx1 functions in the retina and adult hippocampus. Here, qPCR, in-situ hybridization, and immunohistochemistry (IHC) demonstrated that Panx1 is expressed in axon bundles deriving from sensory neurons of the OE. The localization, distribution, and expression of major olfactory signal transduction proteins were not significantly altered in Panx1(-/-) mice. Further, functional analysis of Panx1(-/-) animals does not reveal any major impairment in odor perception, indicated by electroolfactogram (EOG) measurements and behavioral testing. However, ATP release evoked by potassium gluconate application was reduced in Panx1(-/-) mice. This result is consistent with previous reports on ATP release in isolated erythrocytes and spinal or lumbar cord preparations from Panx1(-/-) mice, suggesting that Panx1 is one of several alternative pathways to release ATP in the olfactory system.

10.
Front Physiol ; 5: 82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24578694

RESUMEN

Gap junction communication (GJC) mediated by connexins is critical for heart function. To gain insight into the causal relationship of molecular mechanisms of disease pathology, it is important to understand which mechanisms contribute to impairment of gap junctional communication. Here, we present an update on the known modulators of connexins, including various interaction partners, kinases, and signaling cascades. This gap junction network (GJN) can serve as a blueprint for data mining approaches exploring the growing number of publicly available data sets from experimental and clinical studies.

11.
BMC Res Notes ; 6: 496, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24289243

RESUMEN

BACKGROUND: Large data sets from gene expression array studies are publicly available offering information highly valuable for research across many disciplines ranging from fundamental to clinical research. Highly advanced bioinformatics tools have been made available to researchers, but a demand for user-friendly software allowing researchers to quickly extract expression information for multiple genes from multiple studies persists. FINDINGS: Here, we present a user-friendly LabVIEW program to automatically extract gene expression data for a list of genes from multiple normalized microarray datasets. Functionality was tested for 288 class A G protein-coupled receptors (GPCRs) and expression data from 12 studies comparing normal and diseased human hearts. Results confirmed known regulation of a beta 1 adrenergic receptor and further indicate novel research targets. CONCLUSIONS: Although existing software allows for complex data analyses, the LabVIEW based program presented here, "Array Data Extractor (ADE)", provides users with a tool to retrieve meaningful information from multiple normalized gene expression datasets in a fast and easy way. Further, the graphical programming language used in LabVIEW allows applying changes to the program without the need of advanced programming knowledge.


Asunto(s)
Interpretación Estadística de Datos , Análisis de Secuencia por Matrices de Oligonucleótidos , Humanos
12.
PLoS One ; 8(10): e77722, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24194896

RESUMEN

In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo.


Asunto(s)
Conexinas/genética , Evolución Molecular , Regulación de la Expresión Génica/genética , Filogenia , Retina/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Western Blotting , Conexinas/metabolismo , Inmunohistoquímica , Cinética , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligonucleótidos/genética , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Especificidad de la Especie , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...