Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 259(Pt 1): 129178, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184044

RESUMEN

There is great interest in using eco-friendly functional colorants with antibacterial activity to produce colorful textile and plastic products. In this study, we designed, produced, and analyzed a novel multifunctional hybrid color composite colorant with antimicrobial properties, prepared from plant-based products. The new functional color composite was prepared by stabilizing lawsone dye onto amino-silanized cellulose from bamboo fibers. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were performed to examine the possible interactions between the lawsone dye and silanized bamboo fibers. The color performance, morphology, chemical stability, and thermal stability of the prepared color composite were evaluated using scanning electron microscopy (SEM), UV-Vis spectrophotometry, and thermogravimetric analysis (TGA). The results were compared to those for pure lawsone dye. Modification of amino-silanized bamboo fibers with lawsone dye led to the formation of a light brown colorant that is more resistant to organic solvents (e.g. acetone, ethanol) and elevated temperatures than raw natural dye. Importantly, the designed bamboo fiber/lawsone system (BF-APTES-L) benefits from the synergistic combination of lawsone and bamboo fibers, showing strong antibacterial activity compared to the control sample of bamboo-as evidenced by noticeably inhibited growth of E. coli, S. aureus, and B. subtilis.


Asunto(s)
Lawsonia (Planta) , Naftoquinonas , Lawsonia (Planta)/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química
2.
Materials (Basel) ; 15(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806732

RESUMEN

Natural dyes were extracted from various plant sources and converted into lake pigments based on aluminum and tin. Three different plants (weld, Persian berries, and Brazilwood) were chosen as representative sources of natural dyes. High-performance liquid chromatography (HPLC) and triple-quadrupole mass spectrometry (QqQ MS) were used to identify dyestuffs in the raw extracts. The natural dyes and lake pigments were further characterized by optical and scanning electron microscopy (SEM), UV-Vis spectrophotometry, and thermogravimetric analysis (TGA). The stabilization of the studied plant extracts onto aluminum and tin salts led to the formation of natural lake pigments characterized by different color shades. The natural lake pigments showed improved thermal and chemical stability, which was confirmed by their higher degradation temperatures and lower solubility in chemical agents compared to natural dyes extracted from plants. This improvement can be attributed to electrostatic attraction due to the process of chelation. Ethylene-norbornene (EN) composites colored with the lake pigments exhibited uniform color and improved resistance to long-term UV exposure aging. After 300 h of UV exposure, the aging factor of the neat EN copolymer reduced to 0.3, indicating an advanced aging process of polymer compared to colored samples. Prolonged UV exposure deteriorated the mechanical properties of EN by approximately 57%, compared to about 43% with the application of BW/Al lake pigment. Natural lake pigments could be used as effective substitutes for commercial colorants in plastics for packaging applications.

3.
Polymers (Basel) ; 14(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406257

RESUMEN

We studied the effects of silicon carbide (SiC) and SiC hybrid systems with different conventional fillers (silica, carbon black, graphene, hydrotalcite, halloysite) on the rheometric measurements, crosslink density, mechanical performance, aging stability, morphology, thermal behaviour, and flammability of ethylene-propylene-diene (EPDM) rubber composites. The hybrid filler systems showed technically promising synergetic effects on the performance of the EPDM composites. A pronounced reinforcing effect in EPDM composites filled with hybrid SiC filler systems was noted. Tensile strength increased in the systems with carbon black, silica, and graphene nanoplatelets, by 21%, 37%, and 68%, respectively, compared to the neat EPDM. Dynamic-mechanical analysis (DMA) revealed a shift of the glass transition temperature (Tg) of EPDM composites towards higher values following the incorporation of hybrid SiC fillers, indicating that the mobility of the macromolecule chains was restricted by the presence of filler particles. Importantly, the application of SiC as a filler in EPDM rubber composites contributed to a considerable reduction in flammability, as demonstrated by microscale combustion calorimetry (MCC). The most promising results were obtained for HAL/SiC and LDH/SiC hybrid systems, which produced final composites with high flame retardancy and good mechanical performance. The study highlights the significant potential of SiC and SiC hybrid systems as effective fillers improving the properties of elastomer composites.

4.
Materials (Basel) ; 14(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34576469

RESUMEN

Due to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants in polymer composites. We also investigate the effects of mixtures of these carbon and mineral fillers on the thermal, mechanical, and rheological properties of EPDM rubber composites. The thermal properties of the EPDM vulcanizates were analyzed using the thermogravimetric method. Flammability was determined by pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry.

5.
Materials (Basel) ; 14(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34300972

RESUMEN

Multicolor ethylene-norbornene (EN) composites filled with three different spinel pigments (Cobalt Green-PG50, Zinc Iron Yellow-PY 119, Praseodym Yellow-PY159) were prepared by melt mixing and characterized in terms of their stability under destructive environmental conditions. The EN films were subjected to accelerated aging by ultraviolet (UV) photooxidation for 300 h, 600 h, or 900 h. The mechanical performance of the EN composites was investigated in static and dynamic mechanical tests. The morphologies of the EN samples and their color changes during the aging process were evaluated by scanning electron microscopy (SEM) and spectrophotometric measurements. Fourier transform infrared (FTIR) spectroscopy was applied to determine the amount of carbonyl groups resulting from surface oxidation at different aging times. The effects of the spinel pigments on the thermal stability and combustion properties of the multicolor polymer composites were also assessed, and compared with a sample containing the organic Pigment Yellow 139 (PY139). The results show that the color changes (ΔE) in the spinel pigments were minor in comparison to those in the organic pigment (PY139) and the reference film. The Zinc Yellow (PY119) pigment was the most effective stabilizer of EN copolymer. Moreover, the spinel pigments had a positive effect on the flame retardancy of the EN composites. Microcombustion tests (MCC) showed that the incorporation of both the spinels and the organic pigment PY139 into the EN matrix reduced the heat release rate (HRR) and total heat release (THR) parameters.

6.
Materials (Basel) ; 13(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003590

RESUMEN

In this paper, we present the design of reinforced silica-filled elastomer composites exhibiting a high transparency, high mechanical performance in static and dynamic conditions, and improved electrical conductivity. Two different imidazolium ionic liquids (ILs) were used with increasing loads: 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIMTFSI) and 1-butyl-3-methylimidazolium tetrachloroaluminate (BMIMAlCl4). The composites were prepared in a two-roll mill. The influence of the ILs on the dispersion of the silica in the nitrile rubber (NBR) matrix was assessed by scanning electron microscopy (SEM). The presence of ILs in the NBR/SiO2 systems improved the crosslink density and ionic conductivity of the composites. Their mechanical properties and aging stability remained almost unchanged, at a very satisfactory level. Greater crosslinking was observed for the NBR/SiO2 composites containing BMIMAlCl4, due to its catalytic effect on the efficiency of interface crosslinking reactions. We found the optimal formulation for obtaining transparent reinforced NBR/SiO2 composites. The application of 2.5 phr of BMIMAlCl4 resulted in a high transparency in the case of NBR composites filled with 30 phr of silica.

7.
Materials (Basel) ; 13(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751590

RESUMEN

In this paper, we assess various natural earth pigments as potential colorants and stabilizers for ethylene-norbornene copolymer composites. Several cycloolefin copolymer (COC) composites colored with 2 wt% of a selected pigment were prepared using a two-step mixing method. The aging resistance of the polymer composites was investigated in terms of changes to their mechanical properties, following accelerated aging in the full sunlight spectrum (100, 200, 300, 400, and 500 h). Fourier-transform infrared spectroscopy (FTIR), surface energy measurements, and spectrophotometry were used to assess the color changes, surface defects, and morphology of the composites. Thermogravimetric analysis (TGA) was used to study their thermal stability. The combustion characteristics of the prepared COC composites were evaluated based on the microcombustion calorimetry test (MCC). The application of earth pigments resulted in interesting color changes and a significant improvement in the aging resistance of the COC-filled samples, as evidenced by higher aging factor values and lower carbonyl index parameters compared to the reference (COC). The best results were observed for hematite (HM), gold ochre (GO), and red ochre (RO). In addition, the application of earth pigments, especially iron ochre (IO) and red ochre (RO), in COC contributed to a significant reduction in the heat release rate (HRR) values, indicating improved flame retardancy. This research opens the possibility of producing colorful COC composites with enhanced photostability and reduced flammability for use in polymer applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA