Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
BMC Bioinformatics ; 23(1): 531, 2022 Dec 09.
Article En | MEDLINE | ID: mdl-36494612

BACKGROUND: Modern biomedical research is data-driven and relies heavily on the re-use and sharing of data. Biomedical data, however, is subject to strict data protection requirements. Due to the complexity of the data required and the scale of data use, obtaining informed consent is often infeasible. Other methods, such as anonymization or federation, in turn have their own limitations. Secure multi-party computation (SMPC) is a cryptographic technology for distributed calculations, which brings formally provable security and privacy guarantees and can be used to implement a wide-range of analytical approaches. As a relatively new technology, SMPC is still rarely used in real-world biomedical data sharing activities due to several barriers, including its technical complexity and lack of usability. RESULTS: To overcome these barriers, we have developed the tool EasySMPC, which is implemented in Java as a cross-platform, stand-alone desktop application provided as open-source software. The tool makes use of the SMPC method Arithmetic Secret Sharing, which allows to securely sum up pre-defined sets of variables among different parties in two rounds of communication (input sharing and output reconstruction) and integrates this method into a graphical user interface. No additional software services need to be set up or configured, as EasySMPC uses the most widespread digital communication channel available: e-mails. No cryptographic keys need to be exchanged between the parties and e-mails are exchanged automatically by the software. To demonstrate the practicability of our solution, we evaluated its performance in a wide range of data sharing scenarios. The results of our evaluation show that our approach is scalable (summing up 10,000 variables between 20 parties takes less than 300 s) and that the number of participants is the essential factor. CONCLUSIONS: We have developed an easy-to-use "no-code solution" for performing secure joint calculations on biomedical data using SMPC protocols, which is suitable for use by scientists without IT expertise and which has no special infrastructure requirements. We believe that innovative approaches to data sharing with SMPC are needed to foster the translation of complex protocols into practice.


Biomedical Research , Computer Security , Humans , Information Dissemination , Software
2.
J Transl Med ; 20(1): 458, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209221

BACKGROUND: The low number of patients suffering from any given rare diseases poses a difficult problem for medical research: With the exception of some specialized biobanks and disease registries, potential study participants' information are disjoint and distributed over many medical institutions. Whenever some of those facilities are in close proximity, a significant overlap of patients can reasonably be expected, further complicating statistical study feasibility assessments and data gathering. Due to the sensitive nature of medical records and identifying data, data transfer and joint computations are often forbidden by law or associated with prohibitive amounts of effort. To alleviate this problem and to support rare disease research, we developed the Mainzelliste Secure EpiLinker (MainSEL) record linkage framework, a secure Multi-Party Computation based application using trusted-third-party-less cryptographic protocols to perform privacy-preserving record linkage with high security guarantees. In this work, we extend MainSEL to allow the record linkage based calculation of the number of common patients between institutions. This allows privacy-preserving statistical feasibility estimations for further analyses and data consolidation. Additionally, we created easy to deploy software packages using microservice containerization and continuous deployment/continuous integration. We performed tests with medical researchers using MainSEL in real-world medical IT environments, using synthetic patient data. RESULTS: We show that MainSEL achieves practical runtimes, performing 10 000 comparisons in approximately 5 minutes. Our approach proved to be feasible in a wide range of network settings and use cases. The "lessons learned" from the real-world testing show the need to explicitly support and document the usage and deployment for both analysis pipeline integration and researcher driven ad-hoc analysis use cases, thus clarifying the wide applicability of our software. MainSEL is freely available under: https://github.com/medicalinformatics/MainSEL CONCLUSIONS: MainSEL performs well in real-world settings and is a useful tool not only for rare disease research, but medical research in general. It achieves practical runtimes, improved security guarantees compared to existing solutions, and is simple to deploy in strict clinical IT environments. Based on the "lessons learned" from the real-word testing, we hope to enable a wide range of medical researchers to meet their needs and requirements using modern privacy-preserving technologies.


Biomedical Research , Computer Security , Humans , Privacy , Rare Diseases , Software
3.
Stud Health Technol Inform ; 296: 41-49, 2022 Aug 17.
Article En | MEDLINE | ID: mdl-36073487

The integration of routine medical care data into research endeavors promises great value. However, access to this extra-domain data is constrained by numerous technical and legal requirements. The German Medical Informatics Initiative (MII) - initiated by the Federal Ministry of Research and Education (BMBF) - is making progress in setting up Medical Data Integration Centers to consolidate data stored in clinical primary information systems. Unfortunately, for many research questions cross-organizational data sources are required, as one organization's data is insufficient, especially in rare disease research. A first step, for research projects exploring possible multi-centric study designs, is to perform a feasibility query, i.e., a cohort size calculation transcending organizational boundaries. Existing solutions for this problem, like the previously introduced feasibility process for the MII's HiGHmed consortium, perform well for most use cases. However, there exist use cases where neither centralized data repositories, nor Trusted Third Parties are acceptable for data aggregation. Based on open standards, such as BPMN 2.0 and HL7 FHIR R4, as well as the cryptographic techniques of secure Multi-Party Computation, we introduce a fully automated, decentral feasibility query process without any central component or Trusted Third Party. The open source implementation of the proposed solution is intended as a plugin process to the HiGHmed Data Sharing Framework. The process's concept and underlying algorithms can also be used independently.


Medical Informatics , Feasibility Studies , Humans
4.
BMC Med Inform Decis Mak ; 22(1): 253, 2022 09 22.
Article En | MEDLINE | ID: mdl-36138474

BACKGROUND: The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement organ with compatible living donors. Ideally many medical institutions should participate in a matching program to increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements for highly sensitive personal health information while simultaneously reducing the regulatory burdens. RESULTS: We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP protocol which computes a locally optimal solution by finding matching donor-recipient pairs in a graph structure. SPIKE matches 40 pairs in cycles of length 2 in less than 4 min and outperforms the previous state-of-the-art protocol by a factor of [Formula: see text] in runtime while providing medically more robust solutions. CONCLUSIONS: We show how to solve the KEP in a robust and privacy-preserving manner achieving significantly more practical performance than the current state-of-the-art (Breuer et al., WPES'20 and CODASPY'22). The usage of MPC techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to directly participate in a kidney exchange with reduced legal processes. As sensitive data are not leaving the institutions' network boundaries, the patient data underlie a higher level of protection than in the currently employed (centralized) systems. Furthermore, due to reduced legal barriers, the proposed decentralized system might be simpler to implement in a transnational, intereuropean setting with mixed (national) data protecion laws.


Computer Security , Privacy , Humans , Kidney
5.
Bioinformatics ; 38(6): 1657-1668, 2022 03 04.
Article En | MEDLINE | ID: mdl-32871006

MOTIVATION: Record Linkage has versatile applications in real-world data analysis contexts, where several datasets need to be linked on the record level in the absence of any exact identifier connecting related records. An example are medical databases of patients, spread across institutions, that have to be linked on personally identifiable entries like name, date of birth or ZIP code. At the same time, privacy laws may prohibit the exchange of this personally identifiable information (PII) across institutional boundaries, ruling out the outsourcing of the record linkage task to a trusted third party. We propose to employ privacy-preserving record linkage (PPRL) techniques that prevent, to various degrees, the leakage of PII while still allowing for the linkage of related records. RESULTS: We develop a framework for fault-tolerant PPRL using secure multi-party computation with the medical record keeping software Mainzelliste as the data source. Our solution does not rely on any trusted third party and all PII is guaranteed to not leak under common cryptographic security assumptions. Benchmarks show the feasibility of our approach in realistic networking settings: linkage of a patient record against a database of 10 000 records can be done in 48 s over a heavily delayed (100 ms) network connection, or 3.9 s with a low-latency connection. AVAILABILITY AND IMPLEMENTATION: The source code of the sMPC node is freely available on Github at https://github.com/medicalinformatics/SecureEpilinker subject to the AGPLv3 license. The source code of the modified Mainzelliste is available at https://github.com/medicalinformatics/MainzellisteSEL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Computer Security , Privacy , Databases, Factual , Humans , Medical Record Linkage/methods , Software
...