Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096940

RESUMEN

Cannabidiol (CBD) is a biologically active, non-psychotropic component of Cannabis sativa whose popularity has grown exponentially in recent years. Besides a wealth of potential health benefits, ingestion of CBD poses risks for a number of side effects, of which hepatotoxicity and CBD/herb-drug interactions are of particular concern. Here, we investigated the interaction potential between the cannabidiol-rich cannabis extract (CRCE) and methylsulfonylmethane (MSM), a popular dietary supplement, in the mouse model. For this purpose, 8-week-old male C57BL6/J mice received MSM-containing water (80 mg/100 mL) ad libitum for 17 days. During the last three days of treatment, mice received three doses of CRCE administered in sesame oil via oral gavage (123 mg/kg/day). Administration of MSM alone did not result in any evidence of liver toxicity and did not induce expression of mouse cytochrome P450 (CYP) enzymes. Administration of CRCE did produce significant (p < 0.05) increases in Cyp1a2, Cyp2b10, Cyp2c29, Cyp3a4, Cyp3a11, Cyp2c65, and Cyp2c66 messenger RNA, however, this effect was not amplified by MSM/CRCE co-treatment. Similarly, no evidence of liver toxicity was observed in MSM/CRCE dosed mice. In conclusion, short-term MSM/CRCE co-administration did not demonstrate any evidence of hepatotoxicity in the mouse model.


Asunto(s)
Cannabidiol/toxicidad , Extractos Vegetales/toxicidad , Fosfatasa Alcalina/sangre , Animales , Cannabidiol/farmacocinética , Cannabis/química , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sistema Enzimático del Citocromo P-450/metabolismo , Suplementos Dietéticos/toxicidad , Glutamina/análogos & derivados , Glutamina/metabolismo , Interacciones de Hierba-Droga , Masculino , Ratones Endogámicos C57BL , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Taurina/análogos & derivados , Taurina/metabolismo , Pruebas de Toxicidad
2.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G439-G450, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961718

RESUMEN

Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.


Asunto(s)
Síndrome de Radiación Aguda/etiología , Suplementos Dietéticos/toxicidad , Intestino Delgado/efectos de los fármacos , Metionina/toxicidad , Traumatismos Experimentales por Radiación/etiología , Síndrome de Radiación Aguda/metabolismo , Síndrome de Radiación Aguda/microbiología , Síndrome de Radiación Aguda/patología , Animales , Metilación de ADN/efectos de los fármacos , Disbiosis , Metabolismo Energético/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Dosis de Radiación , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/microbiología , Traumatismos Experimentales por Radiación/patología , Factores de Riesgo , Irradiación Corporal Total
4.
Molecules ; 24(12)2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31212965

RESUMEN

The goal of this study was to investigate the potential for a cannabidiol-rich cannabis extract (CRCE) to interact with the most common over-the-counter drug and the major known cause of drug-induced liver injury-acetaminophen (APAP)-in aged female CD-1 mice. Gavaging mice with 116 mg/kg of cannabidiol (CBD) [mouse equivalent dose (MED) of 10 mg/kg of CBD] in CRCE delivered with sesame oil for three consecutive days followed by intraperitoneally (i.p.) acetaminophen (APAP) administration (400 mg/kg) on day 4 resulted in overt toxicity with 37.5% mortality. No mortality was observed in mice treated with 290 mg/kg of CBD+APAP (MED of 25 mg/kg of CBD) or APAP alone. Following CRCE/APAP co-administration, microscopic examination revealed a sinusoidal obstruction syndrome-like liver injury-the severity of which correlated with the degree of alterations in physiological and clinical biochemistry end points. Mechanistically, glutathione depletion and oxidative stress were observed between the APAP-only and co-administration groups, but co-administration resulted in much greater activation of c-Jun N-terminal kinase (JNK). Strikingly, these effects were not observed in mice gavaged with 290 mg/kg CBD in CRCE followed by APAP administration. These findings highlight the potential for CBD/drug interactions, and reveal an interesting paradoxical effect of CBD/APAP-induced hepatotoxicity.


Asunto(s)
Acetaminofén/efectos adversos , Cannabidiol/efectos adversos , Enfermedad Veno-Oclusiva Hepática/diagnóstico , Enfermedad Veno-Oclusiva Hepática/etiología , Animales , Biomarcadores , Cannabidiol/química , Cannabis/química , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos , Fitoquímicos/efectos adversos , Fitoquímicos/química , Extractos Vegetales/efectos adversos
5.
Carcinogenesis ; 39(9): 1117-1126, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-29939201

RESUMEN

Methionine dependency describes the characteristic rapid in vitro death of most tumor cells in the absence of methionine. Combining chemotherapy with dietary methionine deprivation [methionine-deficient diet (MDD)] at tolerable levels has vast potential in tumor treatment; however, it is limited by MDD-induced toxicity during extended deprivation. Recent advances in imaging and irradiation delivery have created the field of stereotactic body radiotherapy (SBRT), where fewer large-dose fractions delivered in less time result in increased local-tumor control, which could be maximally synergistic with an MDD short course. Identification of the lowest effective methionine dietary intake not associated with toxicity will further enhance the cancer therapy potential. In this study, we investigated the effects of MDD and methionine-restricted diet (MRD) in primary and metastatic melanoma models in combination with radiotherapy (RT). In vitro, MDD dose-dependently sensitized mouse and human melanoma cell lines to RT. In vivo in mice, MDD substantially potentiated the effects of RT by a significant delay in tumor growth, in comparison with administering MDD or RT alone. The antitumor effects of an MDD/RT approach were due to effects on one-carbon metabolism, resulting in impaired methionine biotransformation via downregulation of Mat2a, which encodes methionine adenosyltransferase 2A. Furthermore, and probably most importantly, MDD and MRD substantially diminished metastatic potential; the antitumor MRD effects were not associated with toxicity to normal tissue. Our findings suggest that modulation of methionine intake holds substantial promise for use with short-course SBRT for cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/dietoterapia , Melanoma/patología , Metionina Adenosiltransferasa/biosíntesis , Metionina/farmacología , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Humanos , Masculino , Metionina/administración & dosificación , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología
6.
Crit Rev Oncog ; 23(1-2): 1-11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29953365

RESUMEN

Ionizing radiation is a valuable tool in many spheres of human life. At the same time, it is a genotoxic agent with a well-established carcinogenic potential. Progress achieved in the last two decades has demonstrated convincingly that ionizing radiation can also target the cellular epigenome. Epigenetics is defined as heritable changes in the expression of genes that are not due to alterations of DNA sequence but consist of specific covalent modifications of chromatin components, such as methylation of DNA, histone modifications, and control performed by non-coding RNAs. Accumulating evidence suggests that DNA methylation, a key epigenetic mechanism involved in the control of expression of genetic information, may serve as one of the driving mechanisms of radiation-induced carcinogenesis. Here, we review the literature on the effects of ionizing radiation on DNA methylation in various biological systems, discuss the role of DNA methylation in radiation carcinogenesis, and provide our opinion on the potential utilization of this knowledge in radiation oncology.


Asunto(s)
Transformación Celular Neoplásica/efectos de la radiación , Metilación de ADN/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Radiación Ionizante , Animales , Transformación Celular Neoplásica/metabolismo , Daño del ADN , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Metionina/metabolismo , Terapia Molecular Dirigida , Mutación , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Secuencias Repetitivas de Ácidos Nucleicos
7.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-28677663

RESUMEN

Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons are the major repetitive elements in mammalian genomes. LINE-1s are well-accepted as driving forces of evolution and critical regulators of the expression of genetic information. Alterations in LINE-1 DNA methylation may lead to its aberrant activity and are reported in virtually all human cancers and in experimental carcinogenesis. In this study, we investigated the endogenous DNA methylation status of the 5' untranslated region (UTR) of LINE-1 elements in the bone marrow hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs), and mononuclear cells (MNCs) in radioresistant C57BL/6J and radiosensitive CBA/J mice and in response to ionizing radiation (IR). We demonstrated that basal levels of DNA methylation within the 5'-UTRs of LINE-1 elements did not differ significantly between the two mouse strains and were negatively correlated with the evolutionary age of LINE-1 elements. Meanwhile, the expression of LINE-1 elements was higher in CBA/J mice. At two months after irradiation to 0.1 or 1 Gy of 137Cs (dose rate 1.21 Gy/min), significant decreases in LINE-1 DNA methylation in HSCs were observed in prone to radiation-induced carcinogenesis CBA/J, but not C57BL/6J mice. At the same time, no residual DNA damage, increased ROS, or changes in the cell cycle were detected in HSCs of CBA/J mice. These results suggest that epigenetic alterations may potentially serve as driving forces of radiation-induced carcinogenesis; however, future studies are needed to demonstrate the direct link between the LINE-1 DNA hypomethylation and radiation carcinogenesis.


Asunto(s)
Metilación de ADN/efectos de la radiación , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Elementos de Nucleótido Esparcido Largo , Radiación Ionizante , Animales , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/efectos de la radiación , Hematopoyesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Retroelementos , Especificidad de la Especie
8.
Int J Radiat Biol ; 93(5): 457-469, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28134023

RESUMEN

PURPOSE: Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. CONCLUSIONS: In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.


Asunto(s)
Daño del ADN/genética , Metilación de ADN/genética , ADN/genética , ADN/efectos de la radiación , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Animales , Reparación del ADN/genética , Relación Dosis-Respuesta en la Radiación , Humanos , Radiación Ionizante
9.
Artículo en Inglés | MEDLINE | ID: mdl-27801855

RESUMEN

Children are at a greater risk than adults of developing cancer after being exposed to ionizing radiation. Because of their developing bodies and long life expectancy post-exposure, children require specific attention in the aftermath of nuclear accidents and when radiation is used for diagnosis or treatment purposes. In this review, we discuss the carcinogenic potential of pediatric exposures to ionizing radiation from accidental, diagnostic, and therapeutic modalities. Particular emphasis is given to leukemia and thyroid cancers as consequences of accidental exposures. We further discuss the evidence of cancers that arise as a result of radiotherapy and conclude the review with a summary on the available literature on the links between computer tomography (CT) and carcinogenesis. Appropriate actions taken to mitigate or minimize the negative health effects of pediatric exposures to ionizing radiation and future considerations are discussed.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Traumatismos por Radiación/complicaciones , Radiación Ionizante , Liberación de Radiactividad Peligrosa/mortalidad , Radiografía/efectos adversos , Radioterapia/efectos adversos , Carga Corporal (Radioterapia) , Niño , Relación Dosis-Respuesta en la Radiación , Humanos , Neoplasias Inducidas por Radiación/etiología , Dosis de Radiación , Traumatismos por Radiación/mortalidad , Traumatismos por Radiación/patología , Protección Radiológica , Liberación de Radiactividad Peligrosa/prevención & control , Medición de Riesgo
10.
Environ Res ; 150: 470-481, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27419368

RESUMEN

Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.


Asunto(s)
Metilación de ADN/efectos de la radiación , Elementos de Nucleótido Esparcido Largo/genética , Radiación Ionizante , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Decitabina , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo/fisiología , Pulmón/metabolismo , Pulmón/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7
11.
Environ Epigenet ; 2(4): dvw025, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29492301

RESUMEN

Studies of Fractionated Exposure to Low Doses of Ionizing Radiation (FELDIR) has become of increasing importance to clinical interventions. Its consequences on DNA damage, physical, and mental health have been insufficiently investigated, however. The goal of this study was to determine the effects of FELDIR on the brain using a mouse model. We addressed the levels of DNA damage, global genomic methylation, and DNA methylation machinery in cerebellum, frontal lobe, olfactory bulb and hippocampal tissues, as well as behavioral changes linked to FELDIR exposure. The results reveal increased levels of DNA damage, as reflected by increased occurrence of DNA Strand Breaks (SBs) and dysregulation of stress-response kinase p38. FELDIR also resulted in initial loss of global genomic methylation and altered expression of methyltransferases DNMT1 (down-regulation) and DNMT3a (up-regulation), as well as methyl-binding protein MeCP2 (up-regulation). FELDIR-associated behavioral changes included impaired skilled limb placement on a ladder rung task, increased rearing activity in an open field, and elevated anxiety-like behaviors. The said alterations showed significant dose and tissue specificity. Thus, FELDIR represents a critical impact on DNA integrity and behavioral outcomes that need to be considered in the design of clinical intervention studies.

12.
Artículo en Inglés | MEDLINE | ID: mdl-25813725

RESUMEN

Rats are excellent experimental models for studying breast cancer, but rat strains differ in susceptibility. Among the four strains used in this study, Fischer rats are less susceptible to spontaneous breast cancer, yet they are highly prone to extremely severe metastatic and drug-resistant tumors, in those case where they actually develop the disease. In contrast, Sprague Dawley rats are the most susceptible to spontaneous breast cancer among the strains. ACI rats are highly prone to estrogen-induced cancer. Long-Evans rats are commonly used in mammary gland carcinogenesis studies. The molecular mechanisms of differential breast cancer susceptibility among rat strains are not well understood. Here, gene expression analysis was conducted in the mammary gland tissue of four rat strains--August × Copenhagen Irish (ACI), Long Evans, Fischer-344 and Sprague Dawley--to evaluate possible explanations for the differing breast cancer predispositions. According to the DAVID functional annotation analysis, there were at least eleven, five, and one significantly different pathways, respectively, in Fischer-344, Long-Evans and Sprague Dawley rats, in comparison to ACI rats. Two strains, Fischer-344 and Long-Evans, displayed differential expression in the complement and coagulation cascades, chemokine signaling, PPAR signaling, renin-angiotensin system, ECM-receptor interaction, focal adhesion and glutathione metabolism pathways. The only pathway that was significantly different between the Sprague Dawley and the ACI rats was the ribosome pathway. Our data indicate that general cancer susceptibility and predisposition to the development of aggressive and metastatic cancer are independent genetic conditions. Moreover, we have identified several important differences in the basal epigenetic profile of four rat strains with varying degrees of susceptibility to spontaneous and induced mammary carcinogenesis.


Asunto(s)
Epigénesis Genética , Expresión Génica , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/genética , Animales , Metilación de ADN , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/patología , Ratas , Ratas Endogámicas F344 , Ratas Long-Evans , Ratas Sprague-Dawley , Transcriptoma
13.
Radiat Res ; 182(6): 683-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25409128

RESUMEN

Ionizing radiation (IR) is a well-known human carcinogen. Young and adult individuals are known to respond to radiation in a different manner. In this study, we analyzed changes in the spleen of juvenile (two-week-old), adult (two-month-old) and old (18-month-old) C57BL/6 male mice subjected to a whole-body exposure to 1 Gy of X rays. We measured the number of γ-H2AX foci and ATM protein levels as a reflection of the level of DNA double-strand breaks (DSBs), and found that old animals had a high frequency of occurrence of noninduced DSBs. Exposure to X rays resulted in a rapid increase in the number of DSBs in juvenile and adult animals at 6 h postirradiation followed by a return to preirradiated DSB values at 96 h postirradiation. No changes were observed in old animals. The analysis of the levels of proteins involved in DNA damage base excision and mismatch repair pathways, including KU70, RAD51, POL ß, POL δ, POL ε, APE1 and MSH2 showed substantial age-dependent radiation-induced differences. Finally, we demonstrated that old animals had a higher background level of cell apoptosis compared to younger animals, but in contrast to younger animals, old animals were not able to commit spleen cells to apoptosis after being irradiated. Thus, spleen cells of old mice have a high level of spontaneous DNA damage, but they are not able to deal with additional radiation-induced damage as efficiently as younger animals, substantiating age-depending differences in radiation-induced DNA damage and repair response and its outcomes.


Asunto(s)
Envejecimiento/genética , Envejecimiento/efectos de la radiación , Reparación del ADN/fisiología , Reparación del ADN/efectos de la radiación , Animales , Daño del ADN , Reparación del ADN por Unión de Extremidades/fisiología , Reparación del ADN por Unión de Extremidades/efectos de la radiación , ADN Polimerasa Dirigida por ADN/metabolismo , Histonas/metabolismo , Recombinación Homóloga/fisiología , Recombinación Homóloga/efectos de la radiación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/metabolismo , Bazo/efectos de la radiación
14.
Int J Cancer ; 134(12): 2778-88, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24242335

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and is rising in incidence worldwide. The molecular mechanisms leading to the development of HCC are complex and include both genetic and epigenetic events. To determine the relative contribution of these alterations in liver tumorigenesis, we evaluated epigenetic modifications at both global and gene specific levels, as well as the mutational profile of genes commonly altered in liver tumors. A mouse model of fibrosis-associated liver cancer that was designed to emulate cirrhotic liver, a prevailing disease state observed in most humans with HCC, was used. Tumor and nontumor liver samples from B6C3F1 mice treated with N-nitrosodiethylamine (DEN; a single ip injection of 1 mg/kg at 14 days of age) and carbon tetrachloride (CCl4; 0.2 ml/kg, 2 times/week ip starting at 8 weeks of age for 14 weeks), as well as corresponding vehicle control animals, were analyzed for genetic and epigenetic alterations. H-ras, Ctnnb1 and Hnf1α genes were not mutated in tumors in mice treated with DEN+CCl4 . In contrast, the increased tumor incidence in mice treated with DEN+CCl4 was associated with marked epigenetic changes in liver tumors and nontumor liver tissue, including demethylation of genomic DNA and repetitive elements, a decrease in histone 3 lysine 9 trimethylation (H3K9me3) and promoter hypermethylation and functional downregulation of Riz1, a histone lysine methyltransferase tumor suppressor gene. Additionally, the reduction in H3K9me3 was accompanied by increased expression of long interspersed nucleotide elements 1 and short interspersed nucleotide elements B2, which is an indication of genomic instability. In summary, our results suggest that epigenetic events, rather than mutations in known cancer-related genes, play a prominent role in increased incidence of liver tumors in this mouse model of fibrosis-associated liver cancer.


Asunto(s)
Carcinoma Hepatocelular/genética , Transformación Celular Neoplásica/genética , Metilación de ADN/genética , Epigénesis Genética , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Animales , Tetracloruro de Carbono , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/patología , Cromatina/genética , Cromatina/metabolismo , Dietilnitrosamina , Modelos Animales de Enfermedad , Regulación hacia Abajo , Inestabilidad Genómica/genética , Factor Nuclear 1-alfa del Hepatocito/genética , N-Metiltransferasa de Histona-Lisina/biosíntesis , Histonas/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Elementos de Nucleótido Esparcido Largo/genética , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Elementos de Nucleótido Esparcido Corto/genética , Factores de Transcripción/biosíntesis , beta Catenina/genética
15.
Cancer Biol Ther ; 14(7): 564-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23792640

RESUMEN

The impact of environmental mutagens and carcinogens on the mammary gland has recently received a lot of attention. Among the most generally accepted carcinogenic agents identified as factors that may increase breast cancer incidence are ionizing radiation and elevated estrogen levels. However, the molecular mechanisms of mammary gland aberrations associated with radiation and estrogen exposure still need to be further elucidated, especially the interplay between elevated hormone levels and radiation. Therefore, in the present study, we investigated molecular changes induced in rat mammary gland tissue by estrogen, ionizing radiation, and the combined action of these two carcinogens using a well-established ACI rat model. We found that continuous exposure of intact female ACI rats to elevated levels of estrogen or to both estrogen and radiation resulted in significant hyperproliferative changes in rat mammary glands. In contrast, radiation exposure alone did not induce hyperplasia. Interestingly, despite the obvious disparity in mammary gland morphology, we did not detect significant differences in the levels of genomic methylation among animals exposed to estrogen, radiation, or both agents together. Specifically, we observed a significant global genomic hypomethylation at 6 weeks of exposure. However, by 12 and 18 weeks, the levels of global DNA methylation returned to those of age-matched controls. We also found that combined exposure to radiation and estrogen significantly altered the levels of histone H3 and H4 methylation and acetylation. Most importantly, we for the first time demonstrated that estrogen and radiation exposure caused a significant induction of p42/44 MAPK and p38 pathways that was paralleled by elevated levels of H3S10 phosphorylation, a well-established biomarker of genome and chromosome instability. The precise role of MAPK pathways and their inter-relationship with H3S10 phosphorylation and genome instability in mammary gland tissues needs to be explored further.


Asunto(s)
Estrógenos/farmacología , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Glándulas Mamarias Animales/metabolismo , Animales , Proliferación Celular , Metilación de ADN , Epigenómica , Femenino , Inmunohistoquímica , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Radiación Ionizante , Distribución Aleatoria , Ratas , Ratas Endogámicas ACI , Ratas Sprague-Dawley
16.
FASEB J ; 27(6): 2233-43, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23439872

RESUMEN

Dysregulation of one-carbon metabolism-related metabolic processes is a major contributor to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). It is well established that genetic and gender-specific variations in one-carbon metabolism contribute to the vulnerability to NAFLD in humans. To examine the role of one-carbon metabolism dysregulation in the pathogenesis and individual susceptibility to NAFLD, we used a "population-based" mouse model where male mice from 7 inbred were fed a choline- and folate-deficient (CFD) diet for 12 wk. Strain-dependent down-regulation of several key one-carbon metabolism genes, including methionine adenosyltransferase 1α (Mat1a), cystathionine-ß-synthase (Cbs), methylenetetrahydrofolate reductase (Mthfr), adenosyl-homocysteinase (Ahcy), and methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), was observed. These changes were strongly associated with interstrain variability in liver injury (steatosis, necrosis, inflammation, and activation of fibrogenesis) and hyperhomocysteinemia. Mechanistically, the decreased expression of Mat1a, Ahcy, and Mthfd1 was linked to a reduced level and promoter binding of transcription factor CCAAT/enhancer binding protein ß (CEBPß), which directly regulates their transcription. The strain specificity of diet-induced dysregulation of one-carbon metabolism suggests that interstrain variation in the regulation of one-carbon metabolism may contribute to the differential vulnerability to NFLD and that correcting the imbalance may be considered as preventive and treatment strategies for NAFLD.


Asunto(s)
Carbono/metabolismo , Deficiencia de Colina/metabolismo , Colina , Regulación hacia Abajo , Deficiencia de Ácido Fólico/metabolismo , Ácido Fólico , Hígado/lesiones , Hígado/metabolismo , Animales , Deficiencia de Colina/complicaciones , Deficiencia de Colina/genética , Cistationina betasintasa/genética , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/metabolismo , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/genética , Humanos , Masculino , Metionina Adenosiltransferasa/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Ratones , Ratones Endogámicos , Enfermedad del Hígado Graso no Alcohólico , Especificidad de la Especie
17.
FASEB J ; 26(11): 4592-602, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22872676

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ≈ C57BL/6J ≈ C3H/HeJ < 129S1/SvImJ ≈ CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor α (PPARα)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPARα-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.


Asunto(s)
Deficiencia de Colina/complicaciones , Colina/administración & dosificación , Hígado Graso/etiología , Deficiencia de Ácido Fólico/complicaciones , Ácido Fólico/administración & dosificación , Metabolismo de los Lípidos/genética , Alimentación Animal , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Daño del ADN , Dieta , Hígado Graso/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Variación Genética , Masculino , Ratones , Ratones Endogámicos , Estrés Oxidativo , Análisis por Matrices de Proteínas , Transcriptoma
18.
Clin Epigenetics ; 2(2): 171-185, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21949547

RESUMEN

Chemoresistance is one of the major hurdles to overcome for the successful treatment of breast cancer. At present, there are several mechanisms proposed to explain drug resistance to chemotherapeutic agents, including decreased intracellular drug concentrations, mediated by drug transporters and metabolic enzymes; impaired cellular responses that affect cell cycle arrest, apoptosis, and DNA repair; the induction of signaling pathways that promote the progression of cancer cell populations; perturbations in DNA methylation and histone modifications; and alterations in the availability of drug targets. Both genetic and epigenetic theories have been put forward to explain the mechanisms of drug resistance. Recently, a small non-coding class of RNAs, known as microRNAs, has been identified as master regulators of key genes implicated in mechanisms of chemoresistance. This article reviews the role of microRNAs in regulating chemoresistance and highlights potential therapeutic targets for reversing miRNA-mediated drug resistance. In the future, microRNA-based treatments, in combination with traditional chemotherapy, may be a new strategy for the clinical management of drug-resistant breast cancers.

19.
Cell Cycle ; 9(15): 3078-84, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699652

RESUMEN

The development of early detection and prevention strategies of breast cancer relies on defining molecular and cellular events that characterize progressive alterations underlying preneoplastic changes in the mammary epithelium. Studies have shown that estrogen exerts its carcinogenic effects through both genetic and epigenetic pathways to promote imbalances in proliferation and apoptosis, genomic instability and cancer. The purpose of this study was to identify the earliest epigenetic changes that could be detected in response to estrogen treatment. More importantly, having detected these early pre-malignant epigenetic changes, a follow-up study was designed to address the potential to reverse these estrogen-induced alterations. Using a well-established ACI rat model, morphological and epigenetic changes were identified in the mammary gland tissue as early as 2 days after exposure to constitutively elevated estrogen levels produced by continuous release estrogen mini-pellets. Progressive hyperproliferative changes were paralleled by epigenetic disturbances, including the upregulation of DNA methyltransferases and hyperacetylation of histone residues. These changes could be detected early, and they continued to persist if estrogen was maintained within a high physiological range. Epigenetic features of short-term estrogen exposure were strikingly similar to hallmarks of cancer promotion and progression. Yet, importantly, these changes exhibited a degree of reversibility if a source of elevated levels of estrogen was removed. Knowing that operational reversibility during the promotion stage of carcinogenesis provides a window for intervention, the potential to reverse the effects of elevated levels of estrogen prior to tumor development may prove to be a promising avenue to explore.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Estrógenos/farmacología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Acetilación/efectos de los fármacos , Animales , Metilación de ADN/efectos de los fármacos , Femenino , Histonas/metabolismo , Inmunohistoquímica , Lisina/metabolismo , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Ratas , Factores de Tiempo
20.
Mutat Res ; 694(1-2): 1-6, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20659487

RESUMEN

Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.


Asunto(s)
Apoptosis , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Animales , Proliferación Celular , Estrógenos/química , Estrógenos/metabolismo , Femenino , Genes p53 , Inmunohistoquímica/métodos , Glándulas Mamarias Animales/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Radiación Ionizante , Ratas , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...