Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(23): 42394-42405, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366694

RESUMEN

External cavity mode-locked lasers could be used as comb sources for high volume application such as LIDAR and dual comb spectroscopy. Currently demonstrated chip scale integrated mode-locked lasers all operate in the C-band. In this paper, a hybrid-integrated external cavity mode-locked laser working at 1064 nm is demonstrated, a wavelength beneficial for optical coherence tomography or Raman spectroscopy applications. Additionally, optical injection locking is demonstrated, showing an improvement in the optical linewidth, and an increased stability of the comb spectrum.

2.
Opt Express ; 30(22): 39329-39339, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298887

RESUMEN

In this work, we demonstrate for the first time a narrow-linewidth III-V-on-Si double laser structure with more than a 110 nm wavelength tuning range realized using micro-transfer printing (µTP) technology. Two types of pre-fabricated III-V semiconductor optical amplifiers (SOAs) with a photoluminescence (PL) peak around 1500 nm and 1550 nm are micro-transfer printed on two silicon laser cavities. The laser cavities are fabricated in imec's silicon photonics (SiPh) pilot line on 200 mm silicon-on-insulator (SOI) wafers with a 400 nm thick silicon device layer. By combining the outputs of the two laser cavities on chip, wavelength tunability over S+C+L-bands is achieved.

3.
Opt Express ; 30(5): 6656-6670, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299446

RESUMEN

Dielectric waveguides are capable of confining and guiding terahertz waves along sub-wavelength sized structures. A small feature size allows for a denser integration of different photonic components such as modulators, beam-splitters, wavelength (de)multiplexers and more. The integration of components on a small scale requires bending of the waveguides. In this paper we demonstrate a very short silicon 90°-bend, based on total internal reflection on an elliptically curved outer facet and a rounding of the inner corner joining two waveguides, with an average loss of 0.14 dB per bend in the 600-750 GHz range.

4.
Opt Lett ; 47(4): 937-940, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167563

RESUMEN

Silicon nitride (SiN) is used extensively to complement the standard silicon photonics portfolio. However, thus far demonstrated light sources and detectors on SiN have predominantly focused on telecommunication wavelengths. Yet, to unlock the full potential of SiN, integrated photodetectors for wavelengths below 850 nm are essential to serve applications such as biosensing, imaging, and quantum photonics. Here, we report the first, to the best of our knowledge, microtransfer printed Si p-i-n photodiodes on a commercially available SiN platform to target wavelengths <850 nm. A novel heterogeneous integration process flow was developed to offer a high microtransfer printing yield. Moreover, these devices are fabricated with CMOS compatible and wafer-scale technology.


Asunto(s)
Luz , Compuestos de Silicona , Óptica y Fotónica
5.
Sci Rep ; 11(1): 10027, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976339

RESUMEN

Semiconductor-based mode-locked lasers, integrated sources enabling the generation of coherent ultra-short optical pulses, are important for a wide range of applications, including datacom, optical ranging and spectroscopy. As their performance remains largely unpredictable due to the lack of commercial design tools and the poorly understood mode-locking dynamics, significant research has focused on their modeling. In recent years, traveling-wave models have been favored because they can efficiently incorporate the rich semiconductor physics of the laser. However, thus far such models struggle to include nonlinear and dispersive effects of an extended passive laser cavity, which can play an important role for the temporal and spectral pulse evolution and stability. To overcome these challenges, we developed a hybrid modeling strategy by unifying the traveling-wave modeling technique for the semiconductor laser sections with a split-step Fourier method for the extended passive laser cavity. This paper presents the hybrid modeling concept and exemplifies for the first time the significance of the third order nonlinearity and dispersion of the extended cavity for a 2.6 GHz III-V-on-Silicon mode-locked laser. This modeling approach allows to include a wide range of physical phenomena with low computational complexity, enabling the exploration of novel operating regimes such as chip-scale soliton mode-locking.

6.
Opt Express ; 29(10): 15013-15022, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985210

RESUMEN

Integrated semiconductor mode-locked lasers have shown promise in many applications and are readily fabricated using generic InP photonic integration platforms. However, the passive waveguides offered in such platforms have relatively high linear and nonlinear losses that limit the performance of these lasers. By extending such lasers with, for example, an external cavity, the performance can be increased considerably. In this paper, we demonstrate for the first time that a high-performance mode-locked laser can be achieved with a butt-coupling integration technique using chip scale silicon nitride waveguides. A platform-independent SiN/SU8 coupler design is used to couple between the silicon nitride external cavity and the III/V active chip. Mode-locked lasers at 2.18 GHz and 15.5 GHz repetition rates are demonstrated with Lorentzian RF linewidths several orders of magnitude smaller than what has been demonstrated on monolithic InP platforms. The RF linewidth was 31 Hz for the 2.18 GHz laser.

7.
Opt Lett ; 46(7): 1490-1493, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793472

RESUMEN

We theoretically and experimentally investigate type II second harmonic generation in III-V-on-insulator wire waveguides. We show that the propagation direction plays a crucial role and that longitudinal field components can be leveraged for robust and efficient conversion. We predict that the maximum theoretical conversion is larger than that of type I second harmonic generation for similar waveguide dimensions and reach an experimental conversion efficiency of 12%/W, limited by the propagation loss.

8.
Opt Express ; 28(21): 31584-31593, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115128

RESUMEN

The large index contrast and the subwalength tranverse dimensions of nanowires induce strong longitudinal electric field components. We show that these components play an important role for second harmonic generation in III-V wire waveguides. To illustrate this behavior, an efficiency map of nonlinear conversion is determined based on full-vectorial calculations. It reveals that many different waveguide dimensions and directions are suitable for efficient conversion of a fundamental quasi-TE pump mode around the 1550 nm telecommunication wavelength to a higher-order second harmonic mode.

9.
Opt Express ; 28(15): 22424-22442, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752508

RESUMEN

A design and multiphysical model is presented for an on-chip gas sensor that transduces terahertz gas absorption through sound generation into a mechanical motion that can be read out externally. The signal is triply enhanced by designing a structure that functions simultaneously as an optical, an acoustical and a mechanical resonator. The structure is made in high-resistivity silicon and can be fabricated using CMOS and MEMS fabrication technologies. The sensor is a purely passive element, so an external THz source and read-out are required. The chip has a footprint of 3 mm2. A detection limit of 234 ppb of methanol for a source power of 1 mW and an integration time of 1 ms is predicted.

10.
Opt Lett ; 45(3): 603-606, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004262

RESUMEN

We demonstrate supercontinuum generation over an octave spaning from 1055 to 2155 nm on the highly nonlinear aluminum gallium arsenide (AlGaAs)-on-insulator platform. This is enabled by the generation of two dispersive waves in a 3-mm-long dispersion-engineered nano-waveguide. The waveguide is pumped at telecom wavelengths (1555 nm) with 3.6 pJ femtosecond pulses. We experimentally validate the coherence of the generated supercontinuum around the pump wavelength (1450-1750 nm), and our numerical simulation shows a high degree of coherence over the full spectrum.

11.
Sci Rep ; 8(1): 17177, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464320

RESUMEN

Supercontinuum generation in Kerr media has become a staple of nonlinear optics. It has been celebrated for advancing the understanding of soliton propagation as well as its many applications in a broad range of fields. Coherent spectral broadening of laser light is now commonly performed in laboratories and used in commercial "white light" sources. The prospect of miniaturizing the technology is currently driving experiments in different integrated platforms such as semiconductor on insulator waveguides. Central to the spectral broadening is the concept of higher-order soliton fission. While widely accepted in silica fibers, the dynamics of soliton decay in semiconductor waveguides is yet poorly understood. In particular, the role of nonlinear loss and free carriers, absent in silica, remains an open question. Here, through experiments and simulations, we show that nonlinear loss is the dominant perturbation in wire waveguides, while free-carrier dispersion is dominant in photonic crystal waveguides.

12.
Nat Commun ; 9(1): 3444, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150757

RESUMEN

Silicon nitride (SiN) is emerging as a competitive platform for CMOS-compatible integrated photonics. However, active devices such as modulators are scarce and still lack in performance. Ideally, such a modulator should have a high bandwidth, good modulation efficiency, low loss, and cover a wide wavelength range. Here, we demonstrate the first electro-optic modulators based on ferroelectric lead zirconate titanate (PZT) films on SiN, in both the O-band and C-band. Bias-free operation, bandwidths beyond 33 GHz and data rates of 40 Gbps are shown, as well as low propagation losses (α ≈ 1 dB cm-1). A half-wave voltage-length product of 3.2 V cm is measured. Simulations indicate that further improvement is possible. This approach offers a much-anticipated route towards high-performance phase modulators on SiN.

13.
Opt Express ; 25(25): 30939-30945, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29245773

RESUMEN

As resonance mass sensors shrink in order to improve the sensitivity, traditional methods of transduction and readout struggle to keep up with increasing resonance frequencies and decreasing feature sizes. In this work we demonstrate an all-photonically transduced resonant mass sensor that manages to deal with these problems. The strong optomechanical force in slot waveguides is used to drive the mechanical resonanator giving a good signal to noise ratio at low optical powers. Using 120 µW of modulated optical power we measure a frequency noise equivalent to being able to resolve 500 kDa.

14.
Opt Express ; 25(16): 19034-19042, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041093

RESUMEN

We present the design, fabrication and characterization of efficient fiber-to-chip grating couplers on a Germanium-on-Silicon (Ge-on-Si) and Germanium-on-silicon-on-insulator (Ge-on-SOI) platform in the 5 µm wavelength range. The best grating couplers on Ge-on-Si and Ge-on-SOI have simulated coupling efficiencies of -4 dB (40%) with a 3 dB bandwidth of 180 nm and -1.5 dB (70%) with a 3 dB bandwidth of 200 nm, respectively. Experimentally, we show a maximum efficiency of -5 dB (32%) and a 3 dB bandwidth of 100 nm for Ge-on-Si grating couplers, and a -4 dB (40%) efficiency with a 3 dB bandwidth of 180 nm for Ge-on-SOI couplers.

15.
Light Sci Appl ; 6(5): e16260, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30167253

RESUMEN

Optical frequency combs emerge as a promising technology that enables highly sensitive, near-real-time spectroscopy with a high resolution. The currently available comb generators are mostly based on bulky and high-cost femtosecond lasers for dense comb generation (line spacing in the range of 100 MHz to 1 GHz). However, their integrated and low-cost counterparts, which are integrated semiconductor mode-locked lasers, are limited by their large comb spacing, small number of lines and broad optical linewidth. In this study, we report a demonstration of a III-V-on-Si comb laser that can function as a compact, low-cost frequency comb generator after frequency stabilization. The use of low-loss passive silicon waveguides enables the integration of a long laser cavity, which enables the laser to be locked in the passive mode at a record-low 1 GHz repetition rate. The 12-nm 10-dB output optical spectrum and the notably small optical mode spacing results in a dense optical comb that consists of over 1400 equally spaced optical lines. The sub-kHz 10-dB radio frequency linewidth and the narrow longitudinal mode linewidth (<400 kHz) indicate notably stable mode-locking. Such integrated dense comb lasers are very promising, for example, for high-resolution and real-time spectroscopy applications.

16.
Opt Express ; 24(1): 114-24, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26832243

RESUMEN

We report on the first experimental observation of an optical analogue of an event horizon in integrated nanophotonic waveguides, through the reflection of a continuous wave on an intense pulse. The experiment is performed in a dispersion-engineered silicon-on-insulator waveguide. In this medium, solitons do not suffer from Raman induced self-frequency shift as in silica fibers, a feature that is interesting for potential applications of optical event horizons. As shown by simulations, this also allows the observation of multiple reflections at the same time on fundamental solitons ejected by soliton fission.

17.
Opt Express ; 24(5): 5277-5286, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092352

RESUMEN

In this paper, we report the optical injection locking of an L-band (∼1580 nm) 4.7 GHz III-V-on-silicon mode-locked laser with a narrow line width continuous wave (CW) source. This technique allows us to reduce the MHz optical line width of the mode-locked laser longitudinal modes down to the line width of the source used for injection locking, 50 kHz. We show that more than 50 laser lines generated by the mode-locked laser are coherent with the narrow line width CW source. Two locking techniques are explored. In a first approach a hybrid mode-locked laser is injection-locked with a CW source. In a second approach, light from a modulated CW source is injected in a passively mode-locked laser cavity. The realization of such a frequency comb on a chip enables transceivers for high spectral efficiency optical communication.

18.
Opt Lett ; 40(10): 2177-80, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393693

RESUMEN

The generation of an octave spanning supercontinuum covering 488-978 nm (at -30 dB) is demonstrated for the first time on-chip. This result is achieved by dispersion engineering a 1-cm-long Si3N4 waveguide and pumping it with an 100-fs Ti:Sapphire laser emitting at 795 nm. This work offers a bright broadband source for biophotonic applications and frequency metrology.

19.
Opt Lett ; 40(15): 3584-7, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26258363

RESUMEN

We demonstrate the generation of an octave-spanning supercontinuum in InGaP membrane waveguides on a silicon substrate pumped by a 1550-nm femtosecond source. The broadband nature of the supercontinuum in these dispersion-engineered high-index-contrast waveguides is enabled by dispersive wave generation on both sides of the pump as well as by the low nonlinear losses inherent to the material. We also measure the coherence properties of the output spectra close to the pump wavelength and find that the supercontinuum is highly coherent at least in this wavelength range.

20.
Opt Express ; 23(4): 4650-7, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25836502

RESUMEN

We propose high index contrast InGaP photonic wires as a platform for the integration of nonlinear optical functions in the telecom wavelength window. We characterize the linear and nonlinear properties of these waveguide structures. Waveguides with a linear loss of 12 dB/cm and which are coupled to a single mode fiber through gratings with a -7.5 dB coupling loss are realized. From four wave mixing experiments, we extract the real part of the nonlinear parameter γ to be 475 ± 50 W(-1)m(-1) and from nonlinear transmission measurements we infer the absence of two-photon absorption and measure a three-photon absorption coefficient of (2.5 ± 0.5) x 10(-2) cm(3)GW(-2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...