Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38473736

Debye temperatures of α-SnxFe1-xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge-discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s-1 and quadrupole splitting (∆) of 3.52 mm s-1. These values were larger than those of Sn10 (δ: 0.08 mm s-1, ∆: 0.00 mm s-1) and Sn20 (δ: 0.10 mm s-1, ∆: 0.00 mm s-1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10-7 (Ω cm)-1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10-7 (Ω cm)-1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g-1, showed initial capacities of 81 and 85 mAh g-1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g-1 found at 170 and 182 mAh g-1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs.


Iron Compounds , Temperature , Electron Spin Resonance Spectroscopy , Iron Compounds/chemistry , Minerals
2.
J Mater Res ; 38(4): 937-957, 2023.
Article En | MEDLINE | ID: mdl-36059887

Pure and doped iron oxide and hydroxide nanoparticles are highly potential materials for biological, environment, energy and other technological applications. On demand of the applications, single phase as well as multiple phase of different polymorphs or composites of iron oxides with compatible materials for example, zeolite, SiO2, or Au are prepared. The properties of the as-synthesized nanoparticles are predominantly dictated by the local structure and the distribution of the cations. Mössbauer spectroscopy is a perfect and efficient characterization technique to investigate the local structure of the Mössbauer-active element such as Fe, Au, and Sn. In the present review, the local structure transformation on the optimization of the magnetite coexisted with iron hydroxides, spin dynamics of the bare, caped, core-shell and the composites of iron oxide nanoparticles (IONPs), dipole-dipole interactions and the diffusion of IONPs were discussed, based on the findings using Mössbauer spectroscopy.

3.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Article En | MEDLINE | ID: mdl-36364524

The present review describes our long experience in the application of Mössbauer spectroscopy with a high velocity resolution (a high discretization of the velocity reference signal) in the studies of various nanosized and nanostructured iron-containing materials. The results reviewed discuss investigations of: (I) nanosized iron cores in: (i) extracted ferritin, (ii) ferritin in liver and spleen tissues in normal and pathological cases, (iii) ferritin in bacteria, (iv) pharmaceutical ferritin analogues; (II) nanoparticles developed for magnetic fluids for medical purposes; (III) nanoparticles and nanostructured FINEMET alloys developed for technical purposes. The results obtained demonstrate that the high velocity resolution Mössbauer spectroscopy permits to excavate more information and to extract more spectral components in the complex Mössbauer spectra with overlapped components, in comparison with those obtained by using conventional Mössbauer spectroscopy. This review also shows the advances of Mössbauer spectroscopy with a high velocity resolution in the study of various iron-based nanosized and nanostructured materials since 2005.

4.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article En | MEDLINE | ID: mdl-35745301

57Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5Si13.5Nb3B9Cu1. The XRD of the samples indicated changes neither in the crystal structure nor in the texture of irradiated ribbons as compared to those of non-irradiated ones. However, changes in the magnetic anisotropy both in the bulk as well as at the surface of the FINEMET alloy ribbons irradiated by 160 MeV 132Xe ions with a fluence of 1013 ion cm-2 were revealed via the decrease in relative areas of the second and fifth lines of the magnetic sextets in the corresponding Mössbauer spectra. The irradiation-induced change in the magnetic anisotropy in the bulk was found to be similar or somewhat higher than that at the surface. The results are discussed in terms of the defects produced by irradiation and corresponding changes in the orientation of spins depending on the direction of the stress generated around these defects.

5.
Materials (Basel) ; 15(9)2022 Apr 21.
Article En | MEDLINE | ID: mdl-35591353

Sn-Fe-Ni-Co quaternary alloys, in the composition range of 37-44 at% Sn, 35-39 at% Fe, 6-8 at% Ni and 13-17 at% Co, were prepared by direct current (DC) and pulse plating (PP) electrodeposition. The alloy deposits were characterized by XRD, 57Fe and 119Sn conversion electron Mössbauer spectroscopy, SEM-EDX and magnetization measurements. XRD revealed the amorphous character of the quaternary alloy deposits. The dominant ferromagnetic character of the deposits was shown by magnetization and Mössbauer spectroscopy measurements. Room temperature Mössbauer spectra showed minor paramagnetic phases, where their occurrences (~3-20%) are correlated to the electrodeposition parameters (Jdep from -16 to -23 mA/cm2 for DC, Jpulse from -40 to -75 mA/cm2 for PP), the composition and the saturation magnetization (~52-73 emu/g). A considerable difference was found in the magnetization curves applying parallel or perpendicular orientation of the applied fields, indicating magnetic anisotropy both in DC and pulse plated alloy coatings.

6.
Molecules ; 26(4)2021 Feb 18.
Article En | MEDLINE | ID: mdl-33670484

In this mini-review of our research group's activity, the application of 57Fe Mössbauer spectroscopy in studies of electronic structure, coordination environment, and magnetic interactions in an interesting series of Fe(II/III) compounds selected is discussed. We selected two prominent phenomena that arose during investigations of selected groups of compounds carried out at different periods of time: (1) very high magnetic hyperfine fields observed at low temperatures; (2) changes in the oxidation state of the central iron atom of complexes in the solid state during interactions with gaseous O2/H2O mixtures, resulting in spin crossover (SCO).


Chemistry, Inorganic , Magnetic Phenomena , Spectroscopy, Mossbauer , Spin Labels , Models, Molecular , Molecular Conformation
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117970, 2020 Mar 15.
Article En | MEDLINE | ID: mdl-31887674

Microbial cells are well known to be capable of remaining viable when desiccated, and a variety of beneficial microorganisms can thus be preserved for storage. For the ubiquitous widely studied soil bacterium Azospirillum brasilense (wild-type strain Sp7), which has a significant agrobiotechnological potential owing to its plant-growth-promoting capabilities perspective for its use in biofertilisers, Fourier transform infrared (FTIR) spectroscopy (in the diffuse reflectance mode, DRIFT) was used to control the state of biomass, together with 57Fe transmission Mössbauer spectroscopy to monitor intracellular iron speciation in live rapidly frozen cell suspension and in the lyophilised biomass (both measured at T = 80 K). It has been shown for the first time that a relatively large part of ferrous iron in live cells (22% of the whole cellular iron pool, represented by two high-spin Fe(II) forms, in the 18-h culture grown on 57Fe(III) complex with nitrilotriacetic acid as the sole source of iron) gets largely oxidised upon lyophilisation. The remaining part of iron(II) in the resulting dry biomass was found to be ca. 3% only. The major part of ferric iron in the dry biomass was shown to be comprised of ferritin-like ferric species (giving a typical magnetically split sextet at T = 5 K), while the iron(III) formed from cellular iron(II) by oxidation in air in the course of drying remained in a paramagnetic state even at T = 5 K. The possibility of intracellular iron(II) oxidation to iron(III) upon desiccation may be a specific natural strategy to avoid cell damage caused by Fenton-type reactions in dormant (frozen, dried) cells. The results obtained may have important implications related to iron speciation and redox transformations in dried bacterial preparations intended for long-term storage.


Azospirillum brasilense/metabolism , Biomass , Freeze Drying , Intracellular Space/metabolism , Iron/metabolism , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Mossbauer , Oxidation-Reduction
8.
Article En | MEDLINE | ID: mdl-27130827

In the emission (57Co) variant of Mössbauer spectroscopy (EMS), the 57Co radionuclide (with a half-life of 9months) is used that undergoes a nuclear decay 57Co→57Fe via electron capture followed by the emission of a γ-quantum, the energy of which is modified by the chemical state and the close coordination environment of the parent 57Co atom. While EMS has been used largely in materials science and nuclear chemistry, its high sensitivity can also be of great advantage in revealing fine structural features and for speciation analysis of biological complexes, whenever the 57Co2+ cation can be used directly as the coordinating metal or as a substitute for native cobalt or other metal ions. As such EMS applications are yet rare, in order to reliably interpret emission spectra of sophisticated 57Co2+-doped biosystems, model EMS studies of simple cobalt biocomplexes are necessary. In this work, EMS spectroscopic data are analysed and discussed for 57Co2+ complexes with a range of small biomolecules of different structures, including 4-n-hexylresorcinol, homoserine lactone and a few amino acids (spectra measured in rapidly frozen dilute aqueous solutions or in the dried state at T=80K). The EMS data obtained are discussed with regard to the available literature data related to the coordination modes of the biocomplexes under study.


4-Butyrolactone/analogs & derivatives , Cobalt/chemistry , Hexylresorcinol/chemistry , Spectroscopy, Mossbauer , 4-Butyrolactone/chemistry , Aspartic Acid/chemistry , ortho-Aminobenzoates/chemistry
9.
J Environ Radioact ; 173: 58-69, 2017 Jul.
Article En | MEDLINE | ID: mdl-28011110

The research investigated three iron carbonate (siderite) sedimentary concretions from Nagykovácsi, Úri and Délegyháza, Hungary. To identify possible source rocks and effects of the glaze-like exposed surface of the concretions, we carried on comparative petrological, mineralogical, geochemical and isotopic studies. The samples were microbially mediated siderite concretions with embedded metamorphous and igneous mineral clasts, and had specific rim belts characterized by semi-concentric outer Fe-oxide layers, fluffy pyrite-rich outer belts and siderite inner parts. We investigated the cross section of the Fe-carbonate concretions by independent methodologies in order to identify their rim effects. Their surficial oxide layers showed evidence of degassing of the exposed surface caused most probably by elevated temperatures. The inner rim pyrite belt in the concretions excluded the possibility of a prolonged wet surface environment. Microtextural and mineralogical features did not support desert varnish formation. 10Be nuclide values of the Nagykovácsi and Uri concretions were far above the level of terrestrial in-situ cosmogenic nuclides, but they were consistent with the lowest levels for meteorites. Though the data were not conclusive to confirm any kind of known origin, they are contradictary, and open possibilities for a scenario of terrestrial meteorite origin.


Beryllium/analysis , Carbonates/chemistry , Ferric Compounds/chemistry , Radiation Monitoring , Geologic Sediments/chemistry , Hungary , Minerals/chemistry , Paint , Weather
10.
Anal Bioanal Chem ; 408(6): 1565-71, 2016 Feb.
Article En | MEDLINE | ID: mdl-26769130

For the ubiquitous diazotrophic rhizobacterium Azospirillum brasilense, which has been attracting the attention of researchers worldwide for the last 35 years owing to its significant agrobiotechnological and phytostimulating potential, the data on iron acquisition and its chemical speciation in cells are scarce. In this work, for the first time for azospirilla, low-temperature (at 80 K, 5 K, as well as at 2 K without and with an external magnetic field of 5 T) transmission Mössbauer spectroscopic studies were performed for lyophilised biomass of A. brasilense (wild-type strain Sp7 grown with (57)Fe(III) nitrilotriacetate complex as the sole source of iron) to enable quantitative chemical speciation analysis of the intracellular iron. In the Mössbauer spectrum at 80 K, a broadened quadrupole doublet of high-spin iron(III) was observed with a few percent of a high-spin iron(II) contribution. In the spectrum measured at 5 K, a dominant magnetically split component appeared with the parameters typical of ferritin species from other bacteria, together with a quadrupole doublet of a superparamagnetic iron(III) component and a similarly small contribution from the high-spin iron(II) component. The Mössbauer spectra recorded at 2 K (with or without a 5 T external field) confirmed the assignment of ferritin species. About 20% of total Fe in the dry cells of A. brasilense strain Sp7 were present in iron(III) forms superparamagnetic at both 5 and 2 K, i.e. either different from ferritin cores or as ferritin components with very small particle sizes.


Azospirillum brasilense/metabolism , Ferritins/metabolism , Iron/metabolism , Spectroscopy, Mossbauer/methods , Azospirillum brasilense/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ferritins/chemistry , Freeze Drying , Iron/chemistry , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared
11.
Dalton Trans ; 43(48): 17971-9, 2014 Dec 28.
Article En | MEDLINE | ID: mdl-25359218

The identity of the predominating tin(ii)-hydroxide complex formed in hyper-alkaline aqueous solutions (0.2 ≤CNaOH≤ 12 mol dm(-3)) is determined by potentiometric titrations, Raman, Mössbauer and XANES spectroscopy, supplemented by quantum chemical calculations. Thermodynamic studies using a H2/Pt electrode up to free hydroxide concentrations of 1 mol dm(-3) showed the presence of a single monomeric complex with a tin(II) : hydroxide ratio of 1 : 3. This observation together with Raman and Mössbauer spectroscopic measurements supplemented by quantum mechanical calculations proved that the predominating complex is [Sn(OH)3](-), and that the presence of the other possible complex, [SnO(OH)](-), could not be proven with either experiments or simulations. The structure of the trihydroxidostannate(II) complex, [Sn(OH)3](-), was determined by EXAFS and was found to be independent of the applied hydroxide and tin(II) concentrations. The mean Sn-O bond distance is short, 2.078 Å, and in very good agreement with the only structure reported in the solid state. It is also shown that at pH values above 13 the speciation of the predominant trihydroxidostannate(II) complex is not affected by the presence of high concentrations of chloride ions.


Hydroxides/chemistry , Tin/chemistry , Coordination Complexes/chemistry , Quantum Theory , Spectroscopy, Mossbauer , Spectrum Analysis, Raman , Thermodynamics , Water/chemistry , X-Ray Absorption Spectroscopy
12.
Anal Bioanal Chem ; 405(6): 1921-7, 2013 Feb.
Article En | MEDLINE | ID: mdl-22960797

The emission ((57)Co) variant of Mössbauer spectroscopy, rarely used in biology-related studies, was applied to study binding and possible transformations of (57)Co(II) traces in live and dead (hydrothermally treated) cells of the rhizobacterium Azospirillum brasilense (strain Sp7) at T=80 K in frozen aqueous suspensions and as their dried residues. The Mössbauer parameters calculated from the spectra were compared with the similarly obtained data reported earlier for another A. brasilense strain, Sp245 (which differs from strain Sp7 by the ecological niche occupied in the rhizosphere and was found earlier to exhibit different metabolic responses under similar environmental conditions). Similarly to strain Sp245, live cells of strain Sp7, rapidly frozen 2 min and 1 h after their contact with (57)Co(2+) (measured in frozen suspensions), showed marked differences in their Mössbauer parameters, reflecting metabolic transformations of (57)Co(2+) occurring within an hour. However, the parameters for strains Sp7 (this work) and Sp245 (reported earlier), obtained under similar conditions, were found to significantly differ, implying dissimilarity in their metabolic response to Co(2+). This is in line with their different metabolic responses to several heavy metals, including Co(2+), detected earlier using Fourier transform infrared spectroscopy.


Azospirillum brasilense/metabolism , Cobalt/analysis , Cobalt/metabolism , Azospirillum brasilense/chemistry , Biotransformation , Cations, Divalent , Cobalt Radioisotopes , Desiccation , Freezing , Microbial Viability , Rhizosphere , Species Specificity , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Mossbauer , Temperature
13.
Chem Commun (Camb) ; (24): 3630-2, 2009 Jun 28.
Article En | MEDLINE | ID: mdl-19521631

Mononuclear iron(iii) flavonolate was synthesized as synthetic enzyme-substrate complex, and its direct and carboxylate-enhanced dioxygenation as biomimetic functional models with relevance to flavonol 2,4-dioxygenase are briefly described.


Biomimetic Materials/chemical synthesis , Carboxylic Acids/chemistry , Dioxygenases/chemistry , Iron/chemistry , Biomimetic Materials/chemistry , Dioxygenases/metabolism , Kinetics , Models, Molecular , Molecular Structure , Spectrophotometry
14.
Planta ; 229(2): 271-8, 2009 Jan.
Article En | MEDLINE | ID: mdl-18830704

Distinct chemical species of iron were investigated by Mössbauer spectroscopy during iron uptake into cucumber roots grown in unbuffered nutrient solution with or without 57Fe-citrate. Mössbauer spectra of iron deficient roots supplied with 10-500 microM 57Fe-citrate for 30-180 min and 24 h and iron-sufficient ones, were recorded. The roots were analysed for Fe concentration and Fe reductase activity. The Mössbauer parameters in the case of iron-sufficient roots revealed high-spin iron(III) components suggesting the presence of FeIII-carboxylate complexes, hydrous ferric oxides and sulfate-hydroxide containing species. No FeII was detected in these roots. However, iron-deficient roots supplied with 0.5 mM 57FeIII-citrate for 30 min contained significant amount of FeII in a hexaaqua complex form. This is a direct evidence for the Strategy I iron uptake mechanism. Correlation was found between the decrease in Fe reductase activity and the ratio of FeII-FeIII components as the time of iron supply was increased. The data may refer to a higher iron reduction rate as compared to its uptake/reoxidation in the cytoplasm in accordance with the increased reduction rate in iron deficient Strategy I plants.


Cucumis sativus/metabolism , Iron/metabolism , Plant Roots/metabolism , Cucumis sativus/enzymology , FMN Reductase/metabolism , Plant Roots/enzymology , Spectroscopy, Mossbauer
15.
Dalton Trans ; (41): 5603-11, 2008 Nov 07.
Article En | MEDLINE | ID: mdl-18854898

To establish the structure of ferric ions in strongly alkaline (pH > 13) environments, aqueous NaOH solutions supersaturated with respect to Fe(III) and the solid ferric-hydroxo complex salts precipitating from them have been characterized with a variety of experimental techniques. From UV measurements, in solutions of pH > 13, only one kind of Fe(III)-hydroxo complex species was found to be present. The micro crystals obtained from such solutions were proven to be a new, so far unidentified solid phase. Mössbauer spectra of the quick-frozen solution and that of the complex salt indicated a highly symmetrical ferric environment in both systems From the EXAFS and XANES spectra, the environment of the ferric ion in these solutions (both native and quick-frozen) and in the complex salt was found to be different. In the complex salt, the bond lengths are consistent with an octahedral coordination around the ferric centres. In solution, the coordination geometry of Fe(III) is most probably tetrahedral. Our results demonstrate that in strongly alkaline aqueous solutions, ferric ions behave very similarly to other structurally related tervalent ions, like Al(III) or Ga(III).

16.
Biopolymers ; 74(1-2): 64-8, 2004.
Article En | MEDLINE | ID: mdl-15137096

CD spectroscopic study of the secondary structure of partly adenylylated glutamine synthetase (GS) of the bacterium Azospirillum brasilense showed both the native and cation-free (EDTA-treated) enzyme to be highly structured (58 and 49% as alpha-helices, 10 and 20% as beta-structure, respectively). Mg(2+), Mn(2+), or Co(2+), when added to the native GS, had little effect on its CD spectrum, whereas their effects on the cation-free GS were more pronounced. Emission ((57)Co) Mössbauer spectroscopic (EMS) study of (57)Co(2+)-doped cation-free GS in frozen solution and in the dried state gave similar spectra and Mössbauer parameters for the corresponding spectral components, reflecting the ability of the Co(2+)-enzyme complex to retain its properties upon drying. The EMS data show that (a) A. brasilense GS has 2 cation-binding sites per active center and (b) one site has a higher affinity to Co(2+) than the other, in line with the data on other bacterial GSs.


Azospirillum brasilense/enzymology , Glutamate-Ammonia Ligase/chemistry , Azospirillum/enzymology , Cations , Circular Dichroism , Cobalt/chemistry , Magnesium/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Spectrophotometry , Temperature
...