Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Brain ; 17(1): 20, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685046

RESUMEN

While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.


Asunto(s)
Caquexia , Hipotálamo , Lipocalina 2 , Lipopolisacáridos , Microglía , Animales , Caquexia/complicaciones , Caquexia/patología , Microglía/metabolismo , Hipotálamo/metabolismo , Lipocalina 2/metabolismo , Lipopolisacáridos/farmacología , Masculino , Línea Celular Tumoral , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Microbioma Gastrointestinal , Citocinas/metabolismo , Neoplasias/complicaciones , Ratones Endogámicos C57BL , Mediadores de Inflamación/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Neurobiol Pain ; 14: 100133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274841

RESUMEN

Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.

3.
Biochem Biophys Res Commun ; 648: 36-43, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724558

RESUMEN

It is considered that sensory neurons extend into the tumor microenvironment (TME), which could be associated with tumor growth. However, little is known about how sensory signaling could promote tumor progression. In this study, chemogenetic activation of transient receptor potential vanilloid 1 (Trpv1)-positive sensory neurons (C-fibers) by the microinjection of AAV-hSyn-FLEX-hM3Dq-mCherry into the sciatic nerve dramatically increased tumor volume in tumor-bearing Trpv1-Cre mice. This activation in Trpv1::hM3Dq mice that had undergone tumor transplantation significantly reduced the population of tumor-infiltrating CD4+ T cells and increased the mRNA level of the M2-macrophage marker, CX3C motif chemokine receptor 1 (Cx3cr1) in immunosuppressive cells, such as tumor-associated macrophages (TAMs) and tumor-infiltrating monocytic myeloid-derived suppressor cells (M-MDSCs). Under these conditions, we found a significant correlation between the decreased expression of the M1-macrophage marker Tnf and tumor volume. These findings suggest that repeated activation of Trpv1-positive sensory neurons may facilitate tumor growth along with changes in tumor-infiltrating immune cells.


Asunto(s)
Antineoplásicos , Ratones , Animales , Antineoplásicos/metabolismo , Macrófagos/metabolismo , Células Receptoras Sensoriales/metabolismo , Línea Celular Tumoral , Trasplante de Neoplasias , Microambiente Tumoral , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
4.
Mol Brain ; 16(1): 19, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737827

RESUMEN

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Dolor Crónico , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Dolor en Cáncer/complicaciones , Dolor Crónico/metabolismo , Calidad de Vida , Células Receptoras Sensoriales/metabolismo , Neoplasias Óseas/complicaciones
5.
Mol Brain ; 16(1): 18, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732798

RESUMEN

A growing body of evidence suggests that excess stress could aggravate tumor progression. The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the adaptation to stress because the hypothalamic-pituitary-adrenal (HPA) axis can be activated by inducing the release of corticotropin-releasing hormone (CRH) from the PVN. In this study, we used pharmacogenetic techniques to investigate whether concomitant activation of CRHPVN neurons could directly contribute to tumor progression. Tumor growth was significantly promoted by repeated activation of CRHPVN neurons, which was followed by an increase in the plasma levels of corticosterone. Consistent with these results, chronic administration of glucocorticoids induced tumor progression. Under the concomitant activation of CRHPVN neurons, the number of cytotoxic CD8+ T cells in the tumor microenvironment was dramatically decreased, and the mRNA expression levels of hypoxia inducible factor 1 subunit α (HIF1α), glucocorticoid receptor (GR) and Tsc22d3 were upregulated in inhibitory lymphocytes, tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Furthermore, the mRNA levels of various kinds of driver molecules related to tumor progression and tumor metastasis were prominently elevated in cancer cells by concomitant activation of CRHPVN neurons. These findings suggest that repeated activation of the PVN-CRHergic system may aggravate tumor growth through a central-peripheral-associated tumor immune system.


Asunto(s)
Linfocitos T CD8-positivos , Núcleo Hipotalámico Paraventricular , Núcleo Hipotalámico Paraventricular/metabolismo , Linfocitos T CD8-positivos/metabolismo , Hipotálamo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Corticosterona , Neuronas/metabolismo , ARN Mensajero/metabolismo
7.
Br J Cancer ; 127(8): 1565-1574, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35945243

RESUMEN

BACKGROUND: It has been considered that activation of peripheral µ-opioid receptors (MORs) induces side effects of opioids. In this study, we investigated the possible improvement of the immune system in tumour-bearing mice by systemic administration of the peripheral MOR antagonist naldemedine. METHODS: The inhibitory effect of naldemedine on MOR-mediated signalling was tested by cAMP inhibition and ß-arrestin recruitment assays using cultured cells. We assessed possible changes in tumour progression and the number of splenic lymphocytes in tumour-bearing mice under the repeated oral administration of naldemedine. RESULTS: Treatment with naldemedine produced a dose-dependent inhibition of both the decrease in the cAMP level and the increase in ß-arrestin recruitment induced by the MOR agonists. Repeated treatment with naldemedine at a dose that reversed the morphine-induced inhibition of gastrointestinal transport, but not antinociception, significantly decreased tumour volume and prolonged survival in tumour-transplanted mice. Naldemedine administration significantly decreased the increased expression of immune checkpoint-related genes and recovered the decreased level of toll-like receptor 4 in splenic lymphocytes in tumour-bearing mice. CONCLUSIONS: The blockade of peripheral MOR may induce an anti-tumour effect through the recovery of T-cell exhaustion and promotion of the tumour-killing system.


Asunto(s)
Neoplasias , Receptores Opioides mu , Analgésicos Opioides/efectos adversos , Animales , Sistema Inmunológico/metabolismo , Ratones , Derivados de la Morfina , Naltrexona/análogos & derivados , Neoplasias/inducido químicamente , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Receptor Toll-Like 4/metabolismo , beta-Arrestinas/metabolismo
8.
Mol Brain ; 15(1): 17, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172858

RESUMEN

Recent research has suggested that the mesolimbic dopamine network that mainly terminates in the nucleus accumbens may positively control the peripheral immune system. The activation of dopamine receptors in neurons in the nucleus accumbens by the release of endogenous dopamine is thus expected to contribute to efferent immune regulation. As in the stimulation of Gs-coupled dopamine D1-receptors or Gi-coupled D2-receptors by endogenous dopamine, we investigated whether specific stimulation of dopamine D1-receptor-expressing neurons or inhibition of dopamine D2-receptor-expressing neurons in the nucleus accumbens could produce anti-tumor effects and improve the immune system in transgenic mice using pharmacogenetic techniques. Repeated stimulation of D1-receptor-expressing neurons in either the medial shell, lateral shell or core regions of the nucleus accumbens significantly decreased tumor volume under a state of tumor transplantation, whereas repeated suppression of D2-receptor-expressing neurons in these areas had no effect on this event. The number of splenic CD8+ T cells was significantly increased following repeated stimulation of D1-receptor-expressing neurons in the nucleus accumbens of mice with tumor transplantation. Furthermore, this stimulation produced a significant reduction in the population of splenic CD8+ T cells that expressed immune checkpoint-related inhibitory receptors, PD-1, TIM-3 and LAG-3. These findings suggest that repeated stimulation of D1-receptor-expressing neurons (probably D1-receptor-expressing medium spiny neurons) in the nucleus accumbens suppressed tumor progression and improved the immune system by suppressing the exhaustion of splenic CD8+ T cells.


Asunto(s)
Dopamina , Núcleo Accumbens , Animales , Linfocitos T CD8-positivos , Ratones , Ratones Transgénicos , Neuronas
9.
Mol Brain ; 15(1): 10, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991655

RESUMEN

Emerging evidence suggests that the mesolimbic dopaminergic network plays a role in the modulation of pain. As chronic pain conditions are associated with hypodopaminergic tone in the nucleus accumbens (NAc), we evaluated the effects of increasing signaling at dopamine D1/D2-expressing neurons in the NAc neurons in a model of neuropathic pain induced by partial ligation of sciatic nerve. Bilateral microinjection of either the selective D1-receptor (Gs-coupled) agonist Chloro-APB or the selective D2-receptor (Gi-coupled) agonist quinpirole into the NAc partially reversed nerve injury-induced thermal allodynia. Either optical stimulation of D1-receptor-expressing neurons or optical suppression of D2-receptor-expressing neurons in both the inner and outer substructures of the NAc also transiently, but significantly, restored nerve injury-induced allodynia. Under neuropathic pain-like condition, specific facilitation of terminals of D1-receptor-expressing NAc neurons projecting to the VTA revealed a feedforward-like antinociceptive circuit. Additionally, functional suppression of cholinergic interneurons that negatively and positively control the activity of D1- and D2-receptor-expressing neurons, respectively, also transiently elicited anti-allodynic effects in nerve injured animals. These findings suggest that comprehensive activation of D1-receptor-expressing neurons and integrated suppression of D2-receptor-expressing neurons in the NAc may lead to a significant relief of neuropathic pain.


Asunto(s)
Neuralgia , Núcleo Accumbens , Animales , Dopamina , Neuronas Dopaminérgicas/metabolismo , Receptores de Dopamina D2/metabolismo
10.
Mol Brain ; 14(1): 146, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544461

RESUMEN

Chronic postsurgical pain (CPSP) is a serious problem. We developed a mouse model of CPSP induced by electrocautery and examined the mechanism of CPSP. In this mouse model, while both incision and electrocautery each produced acute allodynia, persistent allodynia was only observed after electrocautery. Under these conditions, we found that the mRNA levels of Small proline rich protein 1A (Sprr1a) and Annexin A10 (Anxa10), which are the key modulators of neuropathic pain, in the spinal cord were more potently and persistently increased by electrocautery than by incision. Furthermore, these genes were overexpressed almost exclusively in chronic postsurgical pain-activated neurons. This event was associated with decreased levels of tri-methylated histone H3 at Lys27 and increased levels of acetylated histone H3 at Lys27 at their promoter regions. On the other hand, persistent allodynia and overexpression of Sprr1a and Anxa10 after electrocautery were dramatically suppressed by systemic administration of GSK-J4, which is a selective H3K27 demethylase inhibitor. These results suggest that the effects of electrocautery contribute to CPSP along with synaptic plasticity and epigenetic modification.


Asunto(s)
Anexinas/biosíntesis , Proteínas Ricas en Prolina del Estrato Córneo/biosíntesis , Electrocoagulación/efectos adversos , Código de Histonas , Hiperalgesia/etiología , Proteínas del Tejido Nervioso/biosíntesis , Neuralgia/genética , Neuronas/fisiología , Dolor Postoperatorio/genética , Médula Espinal/fisiopatología , Animales , Anexinas/genética , Benzazepinas/farmacología , Benzazepinas/uso terapéutico , Proteínas Ricas en Prolina del Estrato Córneo/genética , Modelos Animales de Enfermedad , Femenino , Traumatismos de los Pies/fisiopatología , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Genes fos , Histonas/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Lisina/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Neuronas/efectos de los fármacos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/fisiopatología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología
11.
Biochem Biophys Res Commun ; 541: 22-29, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33461064

RESUMEN

Hypothalamic aging is considered to be critical for systemic aging, and the accumulation of "exhausted glial cells" in the hypothalamus may contribute to brain dysfunction. In this study, we used normal aging mice and investigated aging-specific transcriptional identities of microglia and astrocytes in the hypothalamus. We confirmed that normal aging promoted anxiety, induced impairment of motor coordination and reduced physical strength of muscle in mice. To investigate the senescence of hypothalamic glial cells, we isolated CD11b-positive microglia and ACSA-2-positive astrocytes from the hypothalamus of aged mice using magnetic-activated cell sorting (MACS). The mRNA level of p16INK4A was dramatically increased in the hypothalamic microglia of aged mice compared to young mice. Furthermore, the expression of programmed cell death 1 (PD-1) as well as A1-like astrocyte mediators in the hypothalamic microglia was dramatically induced by aging, indicating that normal aging may produce PD-1-enriched "exhausted microglia" in the hypothalamus. Furthermore, neuroinflammatory A1-like reactive astrocytes with a p16INK4A-positive senescent state were predominantly detected in the hypothalamus of aged mice. Exhausted microglia were also detected in the prefrontal cortex of aged mice, whereas astrocytic neuroinflammation was milder than that observed in the hypothalamus, even with p16INK4A-positive senescence. These results suggest that the production of PD-1-enriched exhausted and senescent microglia and neuroinflammatory A1-like reactive astrocytes in the hypothalamus may partly contribute to aging-related emotional and physical dyscoordination.


Asunto(s)
Envejecimiento/metabolismo , Astrocitos/metabolismo , Senescencia Celular , Hipotálamo/metabolismo , Microglía/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Envejecimiento/patología , Animales , Astrocitos/patología , Antígeno CD11b/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Emociones , Hipotálamo/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Desempeño Psicomotor , Prueba de Desempeño de Rotación con Aceleración Constante
12.
Biochem Biophys Res Commun ; 534: 624-631, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33220930

RESUMEN

In the present study, we demonstrated that there is a direct relationship between scratching behaviors induced by itch and functional changes in the brain reward system. Using a conditional place preference test, the rewarding effect was clearly evoked by scratching under both acute and chronic itch stimuli. The induction of ΔFosB, a member of the Fos family of transcription factors, was observed in dopamine transporter (DAT)-positive dopamine neurons in the ventral tegmental area (VTA) of mice suffering from a chronic itch sensation. Based on a cellular analysis of scratching-activated neurons, these neurons highly expressed tyrosine hydroxylase (TH) and DAT genes in the VTA. Furthermore, in an in vivo microdialysis study, the levels of extracellular dopamine in the nucleus accumbens (NAcc) were significantly increased by transient scratching behaviors. To specifically suppress the mesolimbic dopaminergic pathway using pharmacogenetics, we used the TH-cre/hM4Di mice. Pharmacogenetic suppression of mesolimbic dopaminergic neurons significantly decreased scratching behaviors. Under the itch condition with scratching behaviors restricted by an Elizabethan collar, the induction of ΔFosB was found mostly in corticotropin-releasing hormone (CRH)-containing neurons of the hypothalamic paraventricular nucleus (PVN). These findings suggest that repetitive abnormal scratching behaviors under acute and chronic itch stimuli may activate mesolimbic dopamine neurons along with pleasant emotions, while the restriction of such scratching behaviors may initially induce the activation of PVN-CRH neurons associated with stress.


Asunto(s)
Prurito/fisiopatología , Prurito/psicología , Recompensa , Área Tegmental Ventral/fisiopatología , Enfermedad Aguda , Animales , Conducta Animal/fisiología , Enfermedad Crónica , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Expresión Génica , Histamina/administración & dosificación , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleo Accumbens/fisiopatología , Pruebas de Farmacogenómica , Cloruro de Picrilo/administración & dosificación , Prurito/genética , Tirosina 3-Monooxigenasa/genética
13.
Biochem Biophys Res Commun ; 534: 988-994, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139013

RESUMEN

TRV130 (oliceridine), a G protein-biased ligand for µ-opioid receptor, has recently been synthesized. It is considered to have strong antinociceptive effects and only minor adverse effects. However, whether or not oliceridine actually exhibits an ideal pharmacological profile as an analgesic has not yet been fully clarified in animal studies. This study examined the pharmacological profile of oliceridine in cells and animals. Oliceridine (10 µM) did not produce any µ-opioid receptor internalization in cells even though it increased impedance, which reflects the activation of Gi protein using the CellKey™ system, and inhibited the formation of cAMP. In mice, oliceridine (0.3-10 mg/kg) produced a dose-dependent antinociceptive effect with a rapid-onset and short-duration action in the hot-plate test, as well as antihyperalgesia after sciatic nerve ligation without the development of antinociceptive tolerance using the thermal hyperalgesia test. On the other hand, oliceridine inhibited gastrointestinal transit. Furthermore, oliceridine produced rapid-onset hyperlocomotion at antinociceptive doses; sensitization developed in mice and an emetic effect was observed in ferrets. These results indicate that, although oliceridine may produce dopamine-related behaviors even through selective stimulation of the G-protein-biased µ-opioid receptor pathway, it still offers advantages for breakthrough pain without antinociceptive tolerance with adequate doses.


Asunto(s)
Analgésicos/uso terapéutico , Proteínas de Unión al GTP/metabolismo , Neuralgia/tratamiento farmacológico , Receptores Opioides mu/metabolismo , Compuestos de Espiro/uso terapéutico , Tiofenos/uso terapéutico , Analgésicos/farmacología , Animales , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Neuralgia/metabolismo , Receptores Opioides mu/agonistas , Transducción de Señal/efectos de los fármacos , Compuestos de Espiro/farmacología , Tiofenos/farmacología , Factores de Tiempo
14.
Mol Brain ; 13(1): 18, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32070397

RESUMEN

Spinal bulbar muscular atrophy (SBMA) is an adult-onset, slowly progressive motor neuron disease caused by abnormal CAG repeat expansion in the androgen receptor (AR) gene. Although ligand (testosterone)-dependent mutant AR aggregation has been shown to play important roles in motor neuronal degeneration by the analyses of transgenic mice models and in vitro cell culture models, the underlying disease mechanisms remain to be fully elucidated because of the discrepancy between model mice and SBMA patients. Thus, novel human disease models that recapitulate SBMA patients' pathology more accurately are required for more precise pathophysiological analysis and the development of novel therapeutics. Here, we established disease specific iPSCs from four SBMA patients, and differentiated them into spinal motor neurons. To investigate motor neuron specific pathology, we purified iPSC-derived motor neurons using flow cytometry and cell sorting based on the motor neuron specific reporter, HB9e438::Venus, and proceeded to the genome-wide transcriptome analysis by RNA sequences. The results revealed the involvement of the pathology associated with synapses, epigenetics, and endoplasmic reticulum (ER) in SBMA. Notably, we demonstrated the involvement of the neuromuscular synapse via significant upregulation of Synaptotagmin, R-Spondin2 (RSPO2), and WNT ligands in motor neurons derived from SBMA patients, which are known to be associated with neuromuscular junction (NMJ) formation and acetylcholine receptor (AChR) clustering. These aberrant gene expression in neuromuscular synapses might represent a novel therapeutic target for SBMA.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Atrofia Muscular Espinal/patología , Sinapsis/patología , Adulto , Animales , Células Cultivadas , Técnicas de Reprogramación Celular , Fibroblastos , Ontología de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas Motoras , Atrofia Muscular Espinal/genética , Neurogénesis , Factores de Transcripción/fisiología , Expansión de Repetición de Trinucleótido , Adulto Joven
15.
Neurochem Int ; 129: 104494, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31233839

RESUMEN

The mesolimbic dopaminergic signaling, such as that originating from the ventral tegmental area (VTA) neurons in the medial part of the nucleus accumbens (mNAc), plays a role in complex sensory and affective components of pain. To date, we have demonstrated that optogenetic sensory nerve stimulation rapidly alters the dopamine (DA) content within the mNAc. However, the physiological role and biochemical processes underlying such rapid and regional dynamics of DA remain unclear. In this study, using imaging mass spectrometry (IMS), we observed that sensitized pain stimulation by optogenetic sensory nerve activation increased DA and 3-Methoxytyramine (3-MT; a post-synaptic metabolite obtained following DA degradation) in the mNAc of the experimental mice. To delineate the mechanism associated with elevation of DA and 3-MT, the de novo synthesized DA in the VTA/substantia nigra terminal areas was evaluated using IMS by visualizing the metabolic conversion of stable isotope-labeled tyrosine (13C15N-Tyr) to DA. Our approach revealed that at steady state, the de novo synthesized DA occupied >10% of the non-labeled DA pool in the NAc within 1.5 h of isotope-labeled Tyr administration, despite no significant increase following pain stimulation. These results suggested that sensitized pain triggered an increase in the release and postsynaptic intake of DA in the mNAc, followed by its degradation, and likely delayed de novo DA synthesis. In conclusion, we demonstrated that short, peripheral nerve excitation with mechanical stimulation accelerates the mNAc-specific DA signaling and metabolism which might be associated with the development of mechanical allodynia.


Asunto(s)
Dopamina/metabolismo , Hiperalgesia/fisiopatología , Núcleo Accumbens/metabolismo , Optogenética/efectos adversos , Nervio Ciático/fisiopatología , Células Receptoras Sensoriales/efectos de la radiación , Área Tegmental Ventral/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/análogos & derivados , Genes Reporteros , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Umbral del Dolor/efectos de la radiación , Nervio Ciático/efectos de la radiación , Células Receptoras Sensoriales/metabolismo , Tacto
16.
Brain ; 142(6): 1675-1689, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135049

RESUMEN

The mechanism by which dopaminergic neurons are selectively affected in Parkinson's disease is not fully understood. In this study, we found a dramatic increase in the expression of catechol-O-methyltransferase (COMT), along with a lower level of DNA methylation, in induced pluripotent stem cell-derived dopaminergic neurons from patients with parkin (PARK2) gene mutations compared to those from healthy controls. In addition, a significant increase in the expression of COMT was found in dopaminergic neurons of isogenic PARK2 induced pluripotent stem cell lines that mimicked loss of function of PARK2 by CRISPR Cas9 technology. In dopamine transporter (DAT)-Cre mice, overexpression of COMT, specifically in dopaminergic neurons of the substantia nigra, produced cataleptic behaviours associated with impaired motor coordination. These findings suggest that upregulation of COMT, likely resulting from DNA hypomethylation, in dopaminergic neurons may contribute to the initial stage of neuronal dysfunction in Parkinson's disease.


Asunto(s)
Catecol O-Metiltransferasa/genética , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Sustancia Negra/metabolismo
17.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769780

RESUMEN

Human induced pluripotent stem cells (iPSCs) hold enormous promise for regenerative medicine. The major safety concern is the tumorigenicity of transplanted cells derived from iPSCs. A potential solution would be to introduce a suicide gene into iPSCs as a safety switch. The herpes simplex virus type 1 thymidine kinase (HSV-TK) gene, in combination with ganciclovir, is the most widely used enzyme/prodrug suicide system from basic research to clinical applications. In the present study, we attempted to establish human iPSCs that stably expressed HSV-TK with either lentiviral vectors or CRISPR/Cas9-mediated genome editing. However, this task was difficult to achieve, because high-level and/or constitutive expression of HSV-TK resulted in the induction of cell death or silencing of HSV-TK expression. A nucleotide metabolism analysis suggested that excessive accumulation of thymidine triphosphate, caused by HSV-TK expression, resulted in an imbalance in the dNTP pools. This unbalanced state led to DNA synthesis inhibition and cell death in a process similar to a "thymidine block", but more severe. We also demonstrated that the Tet-inducible system was a feasible solution for overcoming the cytotoxicity of HSV-TK expression. Our results provided a warning against using the HSV-TK gene in human iPSCs, particularly in clinical applications.


Asunto(s)
Terapia Genética , Células Madre Pluripotentes Inducidas/enzimología , Simplexvirus/enzimología , Timidina Quinasa/genética , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ganciclovir/farmacología , Edición Génica , Regulación Enzimológica de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Genes Transgénicos Suicidas/genética , Vectores Genéticos/uso terapéutico , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Lentivirus/genética , Nucleótidos/biosíntesis , Nucleótidos/genética , Simplexvirus/genética
18.
J Nat Med ; 73(3): 468-479, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30739283

RESUMEN

The Kampo medicine yokukansan (YKS) has a wide variety of properties such as anxiolytic, anti-inflammatory and analgesic effects, and is also thought to regulate tumor suppression. In this study, we investigated the anti-tumor effect of YKS. We used Lewis lung carcinoma (LLC)-bearing mice that were fed food pellets containing YKS and then performed a fecal microbiota analysis, a microarray analysis for microRNAs (miRNAs) and an in vitro anti-tumor assay. The fecal microbiota analysis revealed that treatment with YKS partly reversed changes in the microbiota composition due to LLC implantation. Furthermore, a miRNA array analysis using blood serum showed that treatment with YKS restored the levels of miR-133a-3p/133b-3p, miR-1a-3p and miR-342-3p following LLC implantation to normal levels. A TargetScan analysis revealed that the epidermal growth factor receptor 1 signaling pathway is one of the major target pathways for these miRNAs. Furthermore, treatment with YKS restored the levels of miR-200b-3p and miR-200c-3p, a recognized mediator of cancer progression and controller of emotion, in the hypothalamus of mice bearing LLC. An in vitro assay revealed that a mixture of pachymic acid, saikosaponins a and d and isoliquiritigenin, which are all contained in YKS, exerted direct and additive anti-tumor effects. The present findings constitute novel evidence that YKS may exert an anti-tumor effect by reversing changes in the fecal microbiota and miRNAs circulating in the blood serum and hypothalamus, and the compounds found in YKS could have direct and additive anti-tumor effects.


Asunto(s)
Medicina Kampo/métodos , Neoplasias/tratamiento farmacológico , Animales , Ansiolíticos/farmacología , Humanos , Masculino , Ratones
19.
Mol Brain ; 12(1): 5, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658665

RESUMEN

Parkinson's disease (PD) is associated with both motor and non-motor symptoms, including constipation, sensory neuropathy, depression, dementia and sleep disorder. Somatostatin (SST) is considered to be a modulator of GABAergic inhibitory transmission, and its levels are reduced in cerebrospinal fluid of PD patients. In the present study, we evaluated the changes in the expression of SST in GABAergic neurons derived from induced pluripotent stem cells (iPSCs) of PD patients. Neural cells were co-treated with the Wnt antagonist IWP-2 and Shh during neurosphere formation to induce GABA-positive forebrain interneurons. Quantitative analyses showed no significant differences, but slight decreases, in the potency of differentiation into GABAergic neurons derived from iPSCs between healthy control and patients with PARK2 mutations, who have been classified as a type of early-onset familial PD due to mutations in the parkin gene. Under this condition, the mRNA level of SST in GABAergic interneurons derived from iPSCs of PARK2-specific PD patients significantly decreased as neural maturation progressed. We also found that SST-positive GABAergic neurons were clearly reduced in GABAergic neurons derived from iPSCs of patients with PARK2 mutations. These findings suggest that the reduction in the expression level of SST in GABAergic interneurons of PD may, at least partly, lead to complex PD-induced symptoms.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Interneuronas/metabolismo , Mutación/genética , Somatostatina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Diferenciación Celular , Línea Celular , Femenino , Neuronas GABAérgicas/patología , Humanos , Interneuronas/patología , Masculino
20.
Transl Psychiatry ; 8(1): 129, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30022058

RESUMEN

Reelin is a protein encoded by the RELN gene that controls neuronal migration in the developing brain. Human genetic studies suggest that rare RELN variants confer susceptibility to mental disorders such as schizophrenia. However, it remains unknown what effects rare RELN variants have on human neuronal cells. To this end, the analysis of human neuronal dynamics at the single-cell level is necessary. In this study, we generated human-induced pluripotent stem cells carrying a rare RELN variant (RELN-del) using targeted genome editing; cells were further differentiated into highly homogeneous dopaminergic neurons. Our results indicated that RELN-del triggered an impaired reelin signal and decreased the expression levels of genes relevant for cell movement in human neurons. Single-cell trajectory analysis revealed that control neurons possessed directional migration even in vitro, while RELN-del neurons demonstrated a wandering type of migration. We further confirmed these phenotypes in neurons derived from a patient carrying the congenital RELN-del. To our knowledge, this is the first report of the biological significance of a rare RELN variant in human neurons based on individual neuron dynamics. Collectively, our approach should be useful for studying reelin function and evaluating mental disorder susceptibility, focusing on individual human neuronal migration.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Movimiento Celular , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Células Madre Pluripotentes/citología , Serina Endopeptidasas/genética , Adulto , Diferenciación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Proteína Reelina , Esquizofrenia/genética , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...