Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
2.
BMC Cancer ; 23(1): 738, 2023 Aug 10.
Article En | MEDLINE | ID: mdl-37563628

BACKGROUND: Genetic screening for pathogenic variants (PVs) in cancer predisposition genes can affect treatment strategies, risk prediction and preventive measures for patients and families. For decades, hereditary breast and ovarian cancer (HBOC) has been attributed to PVs in the genes BRCA1 and BRCA2, and more recently other rare alleles have been firmly established as associated with a high or moderate increased risk of developing breast and/or ovarian cancer. Here, we assess the genetic variation and tumor characteristics in a large cohort of women with suspected HBOC in a clinical oncogenetic setting. METHODS: Women with suspected HBOC referred from all oncogenetic clinics in Sweden over a six-year inclusion period were screened for PVs in 13 clinically relevant genes. The genetic outcome was compared with tumor characteristics and other clinical data collected from national cancer registries and hospital records. RESULTS: In 4622 women with breast and/or ovarian cancer the overall diagnostic yield (the proportion of women carrying at least one PV) was 16.6%. BRCA1/2 PVs were found in 8.9% of women (BRCA1 5.95% and BRCA2 2.94%) and PVs in the other breast and ovarian cancer predisposition genes in 8.2%: ATM (1.58%), BARD1 (0.45%), BRIP1 (0.43%), CDH1 (0.11%), CHEK2 (3.46%), PALB2 (0.84%), PTEN (0.02%), RAD51C (0.54%), RAD51D (0.15%), STK11 (0) and TP53 (0.56%). Thus, inclusion of the 11 genes in addition to BRCA1/2 increased diagnostic yield by 7.7%. The yield was, as expected, significantly higher in certain subgroups such as younger patients, medullary breast cancer, higher Nottingham Histologic Grade, ER-negative breast cancer, triple-negative breast cancer and high grade serous ovarian cancer. Age and tumor subtype distributions differed substantially depending on genetic finding. CONCLUSIONS: This study contributes to understanding the clinical and genetic landscape of breast and ovarian cancer susceptibility. Extending clinical genetic screening from BRCA1 and BRCA2 to 13 established cancer predisposition genes almost doubles the diagnostic yield, which has implications for genetic counseling and clinical guidelines. The very low yield in the syndrome genes CDH1, PTEN and STK11 questions the usefulness of including these genes on routine gene panels.


Breast Neoplasms , Hereditary Breast and Ovarian Cancer Syndrome , Ovarian Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genetic Testing , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Triple Negative Breast Neoplasms/genetics , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Germ-Line Mutation
3.
Cancers (Basel) ; 15(13)2023 Jun 23.
Article En | MEDLINE | ID: mdl-37444426

FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.

4.
Sci Rep ; 13(1): 8536, 2023 05 26.
Article En | MEDLINE | ID: mdl-37237042

BOADICEA is a comprehensive risk prediction model for breast and/or ovarian cancer (BC/OC) and for carrying pathogenic variants (PVs) in cancer susceptibility genes. In addition to BRCA1 and BRCA2, BOADICEA version 6 includes PALB2, CHEK2, ATM, BARD1, RAD51C and RAD51D. To validate its predictions for these genes, we conducted a retrospective study including 2033 individuals counselled at clinical genetics departments in Denmark. All counselees underwent comprehensive genetic testing by next generation sequencing on suspicion of hereditary susceptibility to BC/OC. Likelihoods of PVs were predicted from information about diagnosis, family history and tumour pathology. Calibration was examined using the observed-to-expected ratio (O/E) and discrimination using the area under the receiver operating characteristics curve (AUC). The O/E was 1.11 (95% CI 0.97-1.26) for all genes combined. At sub-categories of predicted likelihood, the model performed well with limited misestimation at the extremes of predicted likelihood. Discrimination was acceptable with an AUC of 0.70 (95% CI 0.66-0.74), although discrimination was better for BRCA1 and BRCA2 than for the other genes in the model. This suggests that BOADICEA remains a valid decision-making aid for determining which individuals to offer comprehensive genetic testing for hereditary susceptibility to BC/OC despite suboptimal calibration for individual genes in this population.


Breast Neoplasms , Ovarian Neoplasms , Humans , Female , Retrospective Studies , Genetic Testing , Genes, BRCA2 , Genetic Predisposition to Disease , Breast Neoplasms/diagnosis , Ovarian Neoplasms/genetics , Ovarian Neoplasms/epidemiology
5.
Genome Med ; 15(1): 25, 2023 04 14.
Article En | MEDLINE | ID: mdl-37060015

BACKGROUND: Pathogenic germline variants (PGVs) in certain genes are linked to higher lifetime risk of developing breast cancer and can influence preventive surgery decisions and therapy choices. Public health programs offer genetic screening based on criteria designed to assess personal risk and identify individuals more likely to carry PGVs, dividing patients into screened and non-screened groups. How tumor biology and clinicopathological characteristics differ between these groups is understudied and could guide refinement of screening criteria. METHODS: Six thousand six hundred sixty breast cancer patients diagnosed in South Sweden during 2010-2018 were included with available clinicopathological and RNA sequencing data, 900 (13.5%) of which had genes screened for PGVs through routine clinical screening programs. We compared characteristics of screened patients and tumors to non-screened patients, as well as between screened patients with (n = 124) and without (n = 776) PGVs. RESULTS: Broadly, breast tumors in screened patients showed features of a more aggressive disease. However, few differences related to tumor biology or patient outcome remained significant after stratification by clinical subgroups or PAM50 subtypes. Triple-negative breast cancer (TNBC), the subgroup most enriched for PGVs, showed the most differences between screening subpopulations (e.g., higher tumor proliferation in screened cases). Significant differences in PGV prevalence were found between clinical subgroups/molecular subtypes, e.g., TNBC cases were enriched for BRCA1 PGVs. In general, clinicopathological differences between screened and non-screened patients mimicked those between patients with and without PGVs, e.g., younger age at diagnosis for positive cases. However, differences in tumor biology/microenvironment such as immune cell composition were additionally seen within PGV carriers/non-carriers in ER + /HER2 - cases, but not between screening subpopulations in this subgroup. CONCLUSIONS: Characterization of molecular tumor features in patients clinically screened and not screened for PGVs represents a relevant read-out of guideline criteria. The general lack of molecular differences between screened/non-screened patients after stratification by relevant breast cancer subsets questions the ability to improve the identification of screening candidates based on currently used patient and tumor characteristics, pointing us towards universal screening. Nevertheless, while that is not attained, molecular differences identified between PGV carriers/non-carriers suggest the possibility of further refining patient selection within certain patient subsets using RNA-seq through, e.g., gene signatures. TRIAL REGISTRATION: The Sweden Cancerome Analysis Network - Breast (SCAN-B) was prospectively registered at ClinicalTrials.gov under the identifier NCT02306096.


Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genetic Testing , Germ-Line Mutation , Genetic Predisposition to Disease , Germ Cells , Tumor Microenvironment
6.
Viruses ; 14(11)2022 11 04.
Article En | MEDLINE | ID: mdl-36366545

Limited data are available on the pathogenesis of HIV-2, and the evolution of Env molecular properties during disease progression is not fully elucidated. We investigated the intra-patient evolution of molecular properties of HIV-2 Env regions (V1-C3) during the asymptomatic, treatment-naïve phase of the infection in 16 study participants, stratified into faster or slower progressors. Most notably, the rate of change in the number of potential N-linked glycosylation sites (PNGS) within the Env (V1-C3) regions differed between progressor groups. With declining CD4+ T-cell levels, slower progressors showed, on average, a decrease in the number of PNGSs, while faster progressors showed no significant change. Furthermore, diversity increased significantly with time in faster progressors, whereas no such change was observed in slower progressors. No differences were identified between the progressor groups in the evolution of length or charge of the analyzed Env regions. Predicted virus CXCR4 use was rare and did not emerge as a dominating viral population during the studied disease course (median 7.9 years, interquartile range [IQR]: 5.2-14.0) in either progressor groups. Further work building on our observations may explain molecular hallmarks of HIV-2 disease progression and differences in pathogenesis between HIV-1 and HIV-2.


HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-2/genetics , HIV-1/genetics , Glycosylation , Disease Progression , Evolution, Molecular
7.
Cancers (Basel) ; 13(20)2021 Oct 19.
Article En | MEDLINE | ID: mdl-34680387

BACKGROUND: We examined whether molecular characterization of high-grade epithelial ovarian cancer can inform the diagnosis and/or identify potential actionable targets. METHODS: All of the consecutively sequenced high-grade ovarian tumours with consent between 2014 until 2019 were included. A total of 274 tumours underwent next generation sequencing using a targeted panel. RESULTS: Patients with high-grade ovarian epithelial cancer were consented to prospective molecular characterization. Clinical information was extracted from their medical record. Tumour DNA was subjected to sequencing, and selected patients received PARP inhibitor therapy. CONCLUSIONS: Tumours from 274 women were sequenced, including high-grade serous carcinoma (n = 252), clear cell carcinoma (n = 4), carcinosarcoma (n = 9), endometrioid carcinoma (n = 3), undifferentiated carcinoma (n = 1), and mixed tumours (n = 5). Genomic profiling did not influence histologic diagnosis. Mutations were identified in TP53, BRCA1, BRCA2, as well as additional homologous recombination repair pathway genes BARD1, ATR, CHEK2, PALB2, RAD51D, RAD50, SLX4, FANCA, RAD51C, and RAD54L. In addition, mutations in PTEN and CDKN2A were identified. Several somatic mutations with implications for germline testing were identified, including RMI1, STK11, and CDH1. Germline testing identified 16 previously unknown BRCA1/2 carriers. Finally, 20 patients were treated with the PARP inhibitor olaparib based on the sequencing results.

8.
Sci Rep ; 11(1): 5307, 2021 03 05.
Article En | MEDLINE | ID: mdl-33674644

Up to 10% of pediatric cancer patients harbor pathogenic germline variants in one or more cancer susceptibility genes. A recent study from the US reported pathogenic variants in 22 out of 60 analyzed autosomal dominant cancer susceptibility genes, implicating 8.5% of pediatric cancer patients. Here we aimed to assess the prevalence of germline pathogenic variants in these 22 genes in a population-based Swedish cohort and to compare the results to those described in other populations. We found pathogenic variants in 10 of the 22 genes covering 3.8% of these patients. The prevalence of TP53 mutations was significantly lower than described in previous studies, which can largely be attributed to differences in tumor diagnosis distributions across the three cohorts. Matched family history for relatives allowed assessment of familial cancer incidence, however, no significant difference in cancer incidence was found in families of children carrying pathogenic variants compared to those who did not.


Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Neoplasms , Child , Cohort Studies , Germ-Line Mutation , Humans , Neoplasms/epidemiology , Neoplasms/genetics , Prevalence , Sweden/epidemiology
9.
Nat Commun ; 11(1): 3747, 2020 07 27.
Article En | MEDLINE | ID: mdl-32719340

Homologous recombination deficiency (HRD) is a defining characteristic in BRCA-deficient breast tumors caused by genetic or epigenetic alterations in key pathway genes. We investigated the frequency of BRCA1 promoter hypermethylation in 237 triple-negative breast cancers (TNBCs) from a population-based study using reported whole genome and RNA sequencing data, complemented with analyses of genetic, epigenetic, transcriptomic and immune infiltration phenotypes. We demonstrate that BRCA1 promoter hypermethylation is twice as frequent as BRCA1 pathogenic variants in early-stage TNBC and that hypermethylated and mutated cases have similarly improved prognosis after adjuvant chemotherapy. BRCA1 hypermethylation confers an HRD, immune cell type, genome-wide DNA methylation, and transcriptional phenotype similar to TNBC tumors with BRCA1-inactivating variants, and it can be observed in matched peripheral blood of patients with tumor hypermethylation. Hypermethylation may be an early event in tumor development that progress along a common pathway with BRCA1-mutated disease, representing a promising DNA-based biomarker for early-stage TNBC.


BRCA1 Protein/genetics , Mutation/genetics , Triple Negative Breast Neoplasms/genetics , Adult , Aged , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , BRCA1 Protein/deficiency , Cohort Studies , DNA Methylation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Phenotype , Prognosis , Promoter Regions, Genetic , Transcription, Genetic , Treatment Outcome , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/therapy
10.
Commun Biol ; 3(1): 339, 2020 07 03.
Article En | MEDLINE | ID: mdl-32620783

The composition of serum proteins is reflecting the current health status and can, with the right tools, be used to detect early signs of disease, such as an emerging cancer. An earlier diagnosis of cancer would greatly increase the chance of an improved outcome for the patients. However, there is still an unmet need for proficient tools to decipher the information in the blood proteome, which calls for further technological development. Here, we present a proof-of-concept study that demonstrates an alternative approach for multiplexed protein profiling of serum samples in solution, using DNA barcoded scFv antibody fragments and next generation sequencing. The outcome shows high accuracy when discriminating samples derived from pancreatic cancer patients and healthy controls and represents a scalable alternative for serum analysis.


Biomarkers, Tumor/blood , Blood Proteins/metabolism , Carcinoma, Pancreatic Ductal/blood , Pancreatic Neoplasms/blood , Proteome/analysis , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Blood Proteins/analysis , Blood Proteins/immunology , Carcinoma, Pancreatic Ductal/pathology , Case-Control Studies , Computational Biology , High-Throughput Nucleotide Sequencing , Humans , Pancreatic Neoplasms/pathology , Proteome/immunology , Proteome/metabolism
12.
J Natl Cancer Inst ; 112(12): 1242-1250, 2020 12 14.
Article En | MEDLINE | ID: mdl-32107557

BACKGROUND: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D. METHODS: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided. RESULTS: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC. CONCLUSIONS: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models.


Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Ovarian Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Heterozygote , Humans , Middle Aged , Risk Factors , Young Adult
13.
Cancers (Basel) ; 12(2)2020 01 26.
Article En | MEDLINE | ID: mdl-31991861

Germline protein truncating variants (PTVs) in the FANCM gene have been associated with a 2-4-fold increased breast cancer risk in case-control studies conducted in different European populations. However, the distribution and the frequency of FANCM PTVs in Europe have never been investigated. In the present study, we collected the data of 114 European female breast cancer cases with FANCM PTVs ascertained in 20 centers from 13 European countries. We identified 27 different FANCM PTVs. The p.Gln1701* PTV is the most common PTV in Northern Europe with a maximum frequency in Finland and a lower relative frequency in Southern Europe. On the contrary, p.Arg1931* seems to be the most common PTV in Southern Europe. We also showed that p.Arg658*, the third most common PTV, is more frequent in Central Europe, and p.Gln498Thrfs*7 is probably a founder variant from Lithuania. Of the 23 rare or unique FANCM PTVs, 15 have not been previously reported. We provide here the initial spectrum of FANCM PTVs in European breast cancer cases.

14.
J Clin Oncol ; 38(7): 674-685, 2020 03 01.
Article En | MEDLINE | ID: mdl-31841383

PURPOSE: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.


Fanconi Anemia Complementation Group N Protein/genetics , Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Breast Neoplasms, Male/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Internationality , Male , Middle Aged , Ovarian Neoplasms/genetics , Pancreatic Neoplasms/genetics , Risk
15.
Front Genet ; 10: 1139, 2019.
Article En | MEDLINE | ID: mdl-31803232

Introduction: Case-control analyses have shown BARD1 variants to be associated with up to >2-fold increase in risk of breast cancer, and potentially greater risk of triple negative breast cancer. BARD1 is included in several gene sequencing panels currently marketed for the prediction of risk of cancer, however there are no gene-specific guidelines for the classification of BARD1 variants. We present the most comprehensive assessment of BARD1 messenger RNA splicing, and demonstrate the application of these data for the classification of truncating and splice site variants according to American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines. Methods: Nanopore sequencing, short-read RNA-seq (whole transcriptome and targeted), and capillary electrophoresis analysis were performed by four laboratories to investigate alternative BARD1 splicing in blood, breast, and fimbriae/ovary related specimens from non-cancer affected tissues. Splicing data were also collated from published studies of nine different tissues. The impact of the findings for PVS1 annotation was assessed for truncating and splice site variants. Results: We identified 62 naturally occurring alternative spliced BARD1 splicing events, including 19 novel events found by next generation sequencing and/or reverse transcription PCR analysis performed for this study. Quantitative analysis showed that naturally occurring splicing events causing loss of clinically relevant domains or nonsense mediated decay can constitute up to 11.9% of overlapping natural junctions, suggesting that aberrant splicing can be tolerated up to this level. Nanopore sequencing of whole BARD1 transcripts characterized 16 alternative isoforms from healthy controls, revealing that the most complex transcripts combined only two alternative splicing events. Bioinformatic analysis of ClinVar submitted variants at or near BARD1 splice sites suggest that all consensus splice site variants in BARD1 should be considered likely pathogenic, with the possible exception of variants at the donor site of exon 5. Conclusions: No BARD1 candidate rescue transcripts were identified in this study, indicating that all premature translation-termination codons variants can be annotated as PVS1. Furthermore, our analysis suggests that all donor and acceptor (IVS+/-1,2) variants can be considered PVS1 or PVS1_strong, with the exception of variants targeting the exon 5 donor site, that we recommend considering as PVS1_moderate.

16.
Nat Med ; 25(10): 1526-1533, 2019 10.
Article En | MEDLINE | ID: mdl-31570822

Whole-genome sequencing (WGS) brings comprehensive insights to cancer genome interpretation. To explore the clinical value of WGS, we sequenced 254 triple-negative breast cancers (TNBCs) for which associated treatment and outcome data were collected between 2010 and 2015 via the population-based Sweden Cancerome Analysis Network-Breast (SCAN-B) project (ClinicalTrials.gov ID:NCT02306096). Applying the HRDetect mutational-signature-based algorithm to classify tumors, 59% were predicted to have homologous-recombination-repair deficiency (HRDetect-high): 67% explained by germline/somatic mutations of BRCA1/BRCA2, BRCA1 promoter hypermethylation, RAD51C hypermethylation or biallelic loss of PALB2. A novel mechanism of BRCA1 abrogation was discovered via germline SINE-VNTR-Alu retrotransposition. HRDetect provided independent prognostic information, with HRDetect-high patients having better outcome on adjuvant chemotherapy for invasive disease-free survival (hazard ratio (HR) = 0.42; 95% confidence interval (CI) = 0.2-0.87) and distant relapse-free interval (HR = 0.31, CI = 0.13-0.76) compared to HRDetect-low, regardless of whether a genetic/epigenetic cause was identified. HRDetect-intermediate, some possessing potentially targetable biological abnormalities, had the poorest outcomes. HRDetect-low cancers also had inadequate outcomes: ~4.7% were mismatch-repair-deficient (another targetable defect, not typically sought) and they were enriched for (but not restricted to) PIK3CA/AKT1 pathway abnormalities. New treatment options need to be considered for now-discernible HRDetect-intermediate and HRDetect-low categories. This population-based study advocates for WGS of TNBC to better inform trial stratification and improve clinical decision-making.


Neoplasm Recurrence, Local/genetics , Prognosis , Triple Negative Breast Neoplasms/genetics , Whole Genome Sequencing , Adult , Aged , Aged, 80 and over , DNA Methylation/genetics , Disease-Free Survival , Female , Genetics, Population , Germ-Line Mutation/genetics , Humans , Middle Aged , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/pathology , Promoter Regions, Genetic , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/pathology
17.
J Med Genet ; 56(7): 453-460, 2019 07.
Article En | MEDLINE | ID: mdl-30890586

BACKGROUND: PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS: Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS: We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS: PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.


Alternative Splicing , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Alleles , Gene Expression Profiling , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Nonsense Mediated mRNA Decay , RNA Splice Sites
18.
mBio ; 10(1)2019 01 08.
Article En | MEDLINE | ID: mdl-30622192

A positive correlation between virus evolutionary rate and disease progression has been shown for human immunodeficiency virus type 1 (HIV-1) infection. Much less is known about HIV-2, the second causative agent of AIDS. We analyzed 528 HIV-2 env V1-C3 sequences generated from longitudinal plasma samples that were collected from 16 study participants during a median observation time of 7.9 years (interquartile range [IQR], 5.2 to 14.0 years). Study participants were classified as faster or slower disease progressors based on longitudinal CD4+ T-cell data. The HIV-2 evolutionary rate was significantly associated with CD4+ T-cell levels and was almost twice as high among the faster progressors as among the slower progressors. Higher evolutionary rates were accounted for by both synonymous and nonsynonymous nucleotide substitutions. Moreover, slow disease progression was associated with stronger positive selection on HIV-2/SIVsm (simian immunodeficiency virus infecting sooty mangabey) surface-exposed conserved residues. This study demonstrated a number of previously unknown characteristics linking HIV-2 disease progression with virus evolution. Some of these findings distinguish HIV-2 from HIV-1 and may contribute to the understanding of differences in pathogenesis.IMPORTANCE The relationship between HIV evolution and disease progression is fundamental to our understanding of HIV immune control and vaccine design. There are no clear definitions for faster and slower HIV-2 disease progression and for the relationship of the rate of progression with HIV-2 evolution. To address the hypothesis that viral evolution is correlated with disease progression in HIV-2 infection, we determined faster and slower disease progression based on follow-up data from a prospective cohort of police officers in Guinea-Bissau. The analysis showed that although the CD4+ T-cell level and the decline in the level were independently associated with progression to AIDS, only the CD4+ T-cell level or a combined CD4+ T-cell level/decline stratification was associated with the rate of HIV-2 evolution. The HIV-2 evolutionary rate was almost twice as high among the faster progressors as among the slower progressors. Importantly, this report defines previously unknown characteristics linking HIV-2 disease progression with virus evolution.


CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/pathology , HIV-2/immunology , CD4 Lymphocyte Count , Disease Progression , Guinea-Bissau , HIV Infections/virology , Humans , Longitudinal Studies , Prospective Studies
19.
Int J Cancer ; 145(2): 401-414, 2019 07 15.
Article En | MEDLINE | ID: mdl-30623411

A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.


Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Hereditary Breast and Ovarian Cancer Syndrome/genetics , RNA Splicing , Sequence Analysis, RNA/methods , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Electrophoresis, Capillary , Female , Genetic Predisposition to Disease , Humans , Mutation
20.
Int J Cancer ; 144(5): 1195-1204, 2019 03 01.
Article En | MEDLINE | ID: mdl-30175445

Breast cancer patients with BRCA1/2-driven tumors may benefit from targeted therapy. It is not clear whether current BRCA screening guidelines are effective at identifying these patients. The purpose of our study was to evaluate the prevalence of inherited BRCA1/2 pathogenic variants in a large, clinically representative breast cancer cohort and to estimate the proportion of BRCA1/2 carriers not detected by selectively screening individuals with the highest probability of being carriers according to current clinical guidelines. The study included 5,122 unselected Swedish breast cancer patients diagnosed from 2001 to 2008. Target sequence enrichment (48.48 Fluidigm Access Arrays) and sequencing were performed (Illumina Hi-Seq 2,500 instrument, v4 chemistry). Differences in patient and tumor characteristics of BRCA1/2 carriers who were already identified as part of clinical BRCA1/2 testing routines and additional BRCA1/2 carriers found by sequencing the entire study population were compared using logistic regression models. Ninety-two of 5,099 patients with valid variant calls were identified as BRCA1/2 carriers by screening all study participants (1.8%). Only 416 study participants (8.2%) were screened as part of clinical practice, but this identified 35 out of 92 carriers (38.0%). Clinically identified carriers were younger, less likely postmenopausal and more likely to be associated with familiar ovarian cancer compared to the additional carriers identified by screening all patients. More BRCA2 (34/42, 81.0%) than BRCA1 carriers (23/50, 46%) were missed by clinical screening. In conclusion, BRCA1/2 mutation prevalence in unselected breast cancer patients was 1.8%. Six in ten BRCA carriers were not detected by selective clinical screening of individuals.


BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Cohort Studies , Female , Humans , Middle Aged , Ovarian Neoplasms/genetics , Prevalence
...