Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 9(5): 2806-2815, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37079915

RESUMEN

There is an urgent need for physiologically relevant and customizable biochip models of human lung tissue to provide a niche for lung disease modeling and drug efficacy. Although various lung-on-a-chips have been developed, the conventional fabrication method has been limited in reconstituting a very thin and multilayered architecture and spatial arrangements of multiple cell types in a microfluidic device. To overcome these limitations, we developed a physiologically relevant human alveolar lung-on-a-chip model, effectively integrated with an inkjet-printed, micron-thick, and three-layered tissue. After bioprinting lung tissues inside four culture inserts layer-by-layer, the inserts are implanted into a biochip that supplies a flow of culture medium. This modular implantation procedure enables the formation of a lung-on-a-chip to facilitate the culture of 3D-structured inkjet-bioprinted lung models under perfusion at the air-liquid interface. The bioprinted models cultured on the chip maintained their structure with three layers of tens of micrometers and achieved a tight junction in the epithelial layer, the critical properties of an alveolar barrier. The upregulation of genes involved in the essential functions of alveoli was also confirmed in our model. Our culture insert-mountable organ-on-a-chip is a versatile platform that can be applied to various organ models by implanting and replacing culture inserts. It is amenable to mass production and the development of customized models through the convergence with bioprinting technology.


Asunto(s)
Pulmón , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Dispositivos Laboratorio en un Chip
2.
Adv Mater ; 35(4): e2204390, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36066995

RESUMEN

A direct transfer of a cell sheet from a culture surface to a target tissue is introduced. Commercially available, flexible parylene is used as the culture surface, and it is proposed that the UV-treated parylene offers adequate and intermediate levels of cell adhesiveness for both the stable cell attachment during culture and for the efficient cell transfer to a target surface. The versatility of this cell-transfer process is demonstrated with various cell types, including MRC-5, HDFn, HULEC-5a, MC3T3-E1, A549, C2C12 cells, and MDCK-II cells. The novel cell-sheet engineering is based on a mechanism of interfacial cell migration between two surfaces with different adhesion preferences. Monitoring of cytoskeletal dynamics and drug treatments during the cell-transfer process reveals that the interfacial cell migration occurs by utilizing the existing transmembrane proteins on the cell surface to bind to the targeted surface. The re-establishment and reversal of cell polarity after the transfer process are also identified. Its unique capabilities of 3D multilayer stacking, freeform design, and curved surface application are demonstrated. Finally, the therapeutic potential of the cell-sheet delivery system is demonstrated by applying it to cutaneous wound healing and skin-tissue regeneration in mice models.


Asunto(s)
Tatuaje , Animales , Ratones , Polímeros , Xilenos , Movimiento Celular , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA