Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACC Clin Electrophysiol ; 9(10): 2149-2162, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37656099

RESUMEN

BACKGROUND: Computational models of fibrosis-mediated, re-entrant left atrial (LA) arrhythmia can identify possible substrate for persistent atrial fibrillation (AF) ablation. Contemporary models use a 1-size-fits-all approach to represent electrophysiological properties, limiting agreement between simulations and patient outcomes. OBJECTIVES: The goal of this study was to test the hypothesis that conduction velocity (Ï´) modulation in persistent AF models can improve simulation agreement with clinical arrhythmias. METHODS: Patients with persistent AF (n = 37) underwent ablation and were followed up for ≥2 years to determine post-ablation outcomes: AF, atrial flutter (AFL), or no recurrence. Patient-specific LA models (n = 74) were constructed using pre-ablation and ≥90 days' post-ablation magnetic resonance imaging data. Simulated pacing gauged in silico arrhythmia inducibility due to AF-like rotors or AFL-like macro re-entrant tachycardias. A physiologically plausible range of Ï´ values (±10 or 20% vs. baseline) was tested, and model/clinical agreement was assessed. RESULTS: Fifteen (41%) patients had a recurrence with AF and 6 (16%) with AFL. Arrhythmia was induced in 1,078 of 5,550 simulations. Using baseline Ï´, model/clinical agreement was 46% (34 of 74 models), improving to 65% (48 of 74) when any possible Ï´ value was used (McNemar's test, P = 0.014). Ï´ modulation improved model/clinical agreement in both pre-ablation and post-ablation models. Pre-ablation model/clinical agreement was significantly greater for patients with extensive LA fibrosis (>17.2%) and an elevated body mass index (>32.0 kg/m2). CONCLUSIONS: Simulations in persistent AF models show a 41% relative improvement in model/clinical agreement when Ï´ is modulated. Patient-specific calibration of Ï´ values could improve model/clinical agreement and model usefulness, especially in patients with higher body mass index or LA fibrosis burden. This could ultimately facilitate better personalized modeling, with immediate clinical implications.


Asunto(s)
Fibrilación Atrial , Aleteo Atrial , Humanos , Fibrilación Atrial/cirugía , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/cirugía , Aleteo Atrial/cirugía , Fibrosis , Simulación por Computador
2.
J Cardiovasc Electrophysiol ; 34(2): 302-312, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36571158

RESUMEN

INTRODUCTION: Late-gadolinium enhancement magnetic resonance (LGE-MRI) imaging is increasingly used in management of atrial fibrillation (AFib) patients. Here, we assess the usefulness of LGE-MRI-based fibrosis quantification to predict arrhythmia recurrence in patients undergoing cryoballoon ablation. Our secondary goal was to compare two widely used fibrosis quantification methods. METHODS: In 102 AF patients undergoing LGE-MRI and cryoballoon ablation (mean age 62 years; 64% male; 59% paroxysmal AFib), atrial fibrosis was quantified using the pixel intensity histogram (PIH) and image intensity ratio (IIR) methods. PIH segmentations were completed by a third-party provider as part of the standard of care at our hospital; Image intensity ratio (IIR) segmentations of the same scans were carried out in our lab using a commercially available software package. Fibrosis burdens and spatial distributions for the two methods were compared. Patients were followed prospectively for recurrent arrhythmia following ablation. RESULTS: Average PIH fibrosis was 15.6 ± 5.8% of the left atrial (LA) volume. Depending on threshold (IIRthr ), the average IIR fibrosis (% of LA wall surface area) ranged from 5.0 ± 7.2% (IIRthr = 1.2) to 37.4 ± 10.9% (IIRthr = 0.97). An IIRthr of 1.03 demonstrated the greatest agreement between the methods, but spatial overlap of fibrotic areas delineated by the two methods was modest (Sorenson Dice coefficient: 0.49). Fourty-two patients (41.2%) had recurrent arrhythmia. PIH fibrosis successfully predicted recurrence (HR 1.07; p = .02) over a follow-up period of 362 ± 149 days; regardless of IIRthr , IIR fibrosis did not predict recurrence. CONCLUSIONS: PIH-based volumetric assessment of atrial fibrosis was modestly predictive of arrhythmia recurrence following cryoballoon ablation in this cohort. IIR-based fibrosis was not predictive of recurrence for any of the IIRthr values tested, and the overlap in designated areas of fibrosis between the PIH and IIR methods was modest. Caution must therefore be exercised when interpreting LA fibrosis from LGE-MRI, since the values and spatial pattern are methodology-dependent.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Humanos , Masculino , Persona de Mediana Edad , Femenino , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Fibrilación Atrial/patología , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/cirugía , Atrios Cardíacos/patología , Fibrosis , Ablación por Catéter/métodos
3.
Front Cardiovasc Med ; 9: 1045730, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386377

RESUMEN

Background: Obesity is a risk factor for atrial fibrillation (AF) and strongly influences the response to treatment. Atrial fibrosis shows similar associations. Epicardial adipose tissue (EAT) may be a link between these associations. We sought to assess whether EAT is associated with body mass index (BMI), left atrial (LA) fibrosis and volume. Methods: LA fibrosis and EAT were assessed using late gadolinium enhancement, and Dixon MRI sequences, respectively. We derived 3D models incorporating fibrosis and EAT, then measured the distance of fibrotic and non-fibrotic areas to the nearest EAT to assess spatial colocalization. Results: One hundred and three AF patients (64% paroxysmal, 27% female) were analyzed. LA volume index was 54.9 (41.2, 69.7) mL/m2, LA EAT index was 17.4 (12.7, 22.9) mL/m2, and LA fibrosis was 17.1 (12.4, 23.1)%. LA EAT was significantly correlated with BMI (R = 0.557, p < 0.001); as well as with LA volume and LA fibrosis after BSA adjustment (R = 0.579 and R = 0.432, respectively, p < 0.001 for both). Multivariable analysis showed LA EAT to be independently associated with LA volume and fibrosis. 3D registration of fat and fibrosis around the LA showed no clear spatial overlap between EAT and fibrotic LA regions. Conclusion: LA EAT is associated with obesity (BMI) as well as LA volume and fibrosis. Regions of LA EAT did not colocalize with fibrotic areas, suggesting a systemic or paracrine mechanism rather than EAT infiltration of fibrotic areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...