Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 11(29): 26134-26143, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31283164

RESUMEN

Multifunctional hydrogels with properties including transparency, flexibility, self-healing, and high electrical conductivity have attracted great attention for their potential application to soft electronic devices. The presence of an ionic species can make hydrogels conductive in nature. However, the conductivity of hydrogels is often influenced by temperature, due to the change of the internal nano/microscopic structure when temperature reaches the sol-gel phase transition temperature. In this regard, by introducing a novel surface-capacitive sensor device based on polymers with lower critical solution temperature (LCST) behavior, near-perfect stimulus discriminability of touch and temperature may be realized. Here, we demonstrate a multimodal sensor that can monitor the location of touch points and temperature simultaneously, using poly(N-isopropylacrylamide) (PNIPAAm) in hybrid poly(vinyl alcohol) (PVA) and sodium tetraborate decahydrate cross-linked hydrogels doped with poly(sodium acrylate) (SA) [w/w/w = 5:2.7:1-3]. This multimodal sensor exhibits a response time of 0.3 s and a temperature coefficient of resistance of -0.58% K-1 from 20 to 40 °C. In addition, the LCST behavior of PNIPAAm-incorporated PVA/SA gels is investigated. Incorporation of LCST polymers into high-end hydrogel systems may contribute to the development of temperature-dependent soft electronics that can be applied in smart windows.

3.
Talanta ; 82(4): 1338-43, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20801338

RESUMEN

Poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) flexible membrane was successfully fabricated by vapor deposition polymerization (VDP) mediated electrospinning for ammonia gas detection. PVA nanofibers (NFs) were electrospun as a core part and polyvinyl alcohol (PVA)/PEDOT coaxial nanocables (NCs) were prepared by VDP method via EDOT monomer adsorption onto the electrospun PVA NFs as templates. To obtain the PEDOT NTs membrane, the PVA NFs were removed from PVA/PEDOT coaxial NCs with distilled water. PVA/PEDOT coaxial NCs and PEDOT NTs had the conductivities of 71 and 61 Scm(-1) and were applied as a transducer for ammonia gas detection in the range of 1-100 parts per million (ppm) of NH(3) gas. They exhibited the minimum detectable level of ca. 5 parts per million (ppm) and fast response time (less than 1s) towards ammonia gas. In a recovery time, the PEDOT NTs membrane sensor was ca. 30s and shorter compared to that of the membrane sensor based on the PVA/PEDOT NCs (ca. 50s). In addition, sensor performance of PEDOT NTs membrane was also undertaken as a function of membrane thickness. Thick membrane sensor (30 microm) had the enhanced sensitivity and the sensitivity on the membrane thickness was in the order of 30 microm>20 microm>10 microm at 60 ppm of NH(3) gas.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Gases/análisis , Membranas Artificiales , Nanotubos , Polímeros/química , Adsorción , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA