Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Int J Pharm ; 659: 124235, 2024 May 17.
Article En | MEDLINE | ID: mdl-38762165

Pulmonary delivery is an efficient route of administration to deliver cannabidiol (CBD) due to the high bioavailability and fast onset of action. The major formulation challenge is the poor aqueous solubility of CBD. This study aimed to produce inhalable CBD powders with enhanced solubility and characterise their solid-state properties. CBD was spray freeze dried with mannitol or trehalose dihydrate with and without dipalmitoylphosphatidylcholine (DPPC). All four powders had acceptable yields at > 70 % with porous and spherical particles. The two crystalline mannitol powders contained less residual solvent than both amorphous trehalose ones. The addition of DPPC did not affect the crystallinity and residual solvent level of the powders. Instead, DPPC made the particles more porous, decreased the particle size from 19-23 µm to 11-13 µm, and increased CBD solubility from 0.36 µg/mL to over 2 µg/mL. The two DPPC powders were dispersed from a low resistance RS01 inhaler, showing acceptable aerosol performance with emitted fractions at 91-93 % and fine particle fractions < 5 µm at 34-43 %. These formulations can be used as a platform to deliver CBD and other cannabinoids by inhalation.

2.
J Pharm Sci ; 112(9): 2371-2384, 2023 09.
Article En | MEDLINE | ID: mdl-37453526

Despite significant research progress in substantiating the therapeutic merits of nanomedicines and the emergence of sophisticated nanotechnologies, the translation of this knowledge into new therapeutic modalities has been sluggish, indicating the need for a more comprehensive understanding of how the unique physicochemical properties of nanoparticles affect their clinical applications. Particle size is a critical quality attribute that impacts the bio-fate of nanoparticles, yet precise knowledge of its effect remains elusive with discrepancies among literature reports. This review aims to address this scientific knowledge gap from a drug development perspective by highlighting potential inadequacies during the evaluation of particle size effects. We begin with a discussion on the major issues in particle size characterization along with the corresponding remedies. The influence of confounding factors on biological effects of particle size, including colloidal stability, polydispersity, and in vitro drug release, are addressed for establishing stronger in vitro-in vivo correlation. Particle size design and tailoring approaches for successful nanoparticulate drug delivery beyond parenteral administration are also illustrated. We believe a holistic understanding of the effect of particle size on bio-fate, combined with consistent nanoparticle manufacturing platforms and tailored characterization techniques, would expedite the translation of nanomedicines into clinical practice.


Nanomedicine , Nanoparticles , Nanomedicine/methods , Particle Size , Translational Research, Biomedical , Drug Delivery Systems , Nanotechnology , Nanoparticles/chemistry
3.
Pharm Res ; 40(5): 1087-1114, 2023 May.
Article En | MEDLINE | ID: mdl-36635488

The use of cannabidiol (CBD) for treating brain disorders has gained increasing interest. While the mechanism of action of CBD in these conditions is still under investigation, CBD has been shown to affect numerous different drug targets in the brain that are involved in brain disorders. Here we review the preclinical and clinical evidence on the potential therapeutic use of CBD in treating various brain disorders. Moreover, we also examine various drug delivery approaches that have been applied to CBD. Due to the slow absorption and low bioavailability with the current oral CBD therapy, more efficient routes of administration to bypass hepatic metabolism, particularly pulmonary delivery, should be considered. Comparison of pharmacokinetic studies of different delivery routes highlight the advantages of intranasal and inhalation drug delivery over other routes of administration (oral, injection, sublingual, buccal, and transdermal) for treating brain disorders. These two routes of delivery, being non-invasive and able to achieve fast absorption and increase bioavailability, are attracting increasing interest for CBD applications, with more research and development expected in the near future.


Brain Diseases , Cannabidiol , Drug Administration Routes , Humans , Brain , Brain Diseases/drug therapy , Cannabidiol/administration & dosage , Cannabidiol/pharmacokinetics , Cannabidiol/therapeutic use
4.
Expert Opin Drug Deliv ; 19(5): 539-558, 2022 05.
Article En | MEDLINE | ID: mdl-35532357

INTRODUCTION: Drugs need to enter the systemic circulation efficiently before they can cross the blood-brain barrier and reach the central nervous system. Although the respiratory tract is not a common route of administration for delivering drugs to the central nervous system, it has attracted increasing interest in recent years for this purpose. AREAS COVERED: In this article, we compare pulmonary delivery to three other common routes (parenteral, oral, and intranasal) for delivering drugs to the central nervous system. Recent studies delivering drugs for different neurological disorders via inhalation are then discussed to illustrate the strengths of pulmonary delivery. EXPERT OPINION: Recent studies provide strong evidence and rationale to support inhaling neurological drugs. Since inhalation can achieve improved pharmacokinetics and rapid onset of action for multiple drugs, it is a noninvasive and efficient method to deliver drugs to the central nervous system. Future research should focus on delivering other small and macro-molecules via the lungs for different neurological conditions.


Drug Delivery Systems , Nervous System Diseases , Administration, Inhalation , Administration, Intranasal , Blood-Brain Barrier , Central Nervous System , Drug Delivery Systems/methods , Humans , Nervous System Diseases/drug therapy , Pharmaceutical Preparations
5.
Antibiotics (Basel) ; 11(5)2022 Apr 25.
Article En | MEDLINE | ID: mdl-35625214

Infections caused by multidrug-resistant (MDR) bacteria have highlighted the importance of the development of new antimicrobial agents. While bacteriophages (phages) are widely studied as alternative agents to antibiotics, combined treatments using phages and antibiotics have exhibited Phage-Antibiotic Synergy (PAS), in which antibiotics promote phage replication and extraordinary antimicrobial efficacy with reduced development of bacterial resistance. This review paper on the current progress of phage-antibiotic therapy includes aspects of the mechanisms of PAS and the therapeutic performance of PAS in combating multidrug-resistant bacterial infections. The choice of phages and antibiotics, the administration time and sequence, and the concentrations of the two agents impact the bacterial inhibitory effects to different extents.

6.
Adv Drug Deliv Rev ; 186: 114293, 2022 07.
Article En | MEDLINE | ID: mdl-35483435

Epithelial surfaces protect exposed tissues in the body against intrusion of foreign materials, including xenobiotics, pollen and microbiota. The relative permeability of the various epithelia reflects their extent of exposure to the external environment and is in the ranking: intestinal≈ nasal ≥ bronchial ≥ tracheal > vaginal ≥ rectal > blood-perilymph barrier (otic), corneal > buccal > skin. Each epithelium also varies in their morphology, biochemistry, physiology, immunology and external fluid in line with their function. Each epithelium is also used as drug delivery sites to treat local conditions and, in some cases, for systemic delivery. The associated delivery systems have had to evolve to enable the delivery of larger drugs and biologicals, such as peptides, proteins, antibodies and biologicals and now include a range of physical, chemical, electrical, light, sound and other enhancement technologies. In addition, the quality-by-design approach to product regulation and the growth of generic products have also fostered advancement in epithelial drug delivery systems.


Drug Delivery Systems , Skin , Female , Humans , Permeability , Pharmaceutical Preparations/metabolism , Skin/metabolism
8.
Pharmaceutics ; 13(8)2021 Aug 14.
Article En | MEDLINE | ID: mdl-34452220

The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3-5.2 µm, with about 50-60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment.

9.
Adv Drug Deliv Rev ; 177: 113952, 2021 10.
Article En | MEDLINE | ID: mdl-34461200

In vitro-in vivo correlation is the establishment of a predictive relationship between in vitro and in vivo data. In the context of cascade impactor results of orally inhaled pharmaceutical aerosols, this involves the linking of parameters such as the emitted dose, fine particle dose, fine particle fraction, and mass median aerodynamic diameter to in vivo lung deposition from scintigraphy data. If the dissolution and absorption processes after deposition are adequately understood, the correlation may be extended to the pharmacokinetics and pharmacodynamics of the delivered drugs. Correlation of impactor data to lung deposition is a relatively new research area that has been gaining recent interest. Although few in number, experiments and meta-analyses have been conducted to examine such correlations. An artificial neural network approach has also been employed to analyse the complex relationships between multiple factors and responses. However, much research is needed to generate more data to obtain robust correlations. These predictive models will be useful in improving the efficiency in product development by reducing the need of expensive and lengthy clinical trials.


Aerosols/administration & dosage , Lung/metabolism , Models, Biological , Pharmaceutical Preparations/administration & dosage , Administration, Inhalation , Animals , Humans , Machine Learning
11.
Ann Transl Med ; 9(7): 596, 2021 Apr.
Article En | MEDLINE | ID: mdl-33987294

Inhaled drugs are routinely used for the treatment of respiratory-supported patients. To date, pressurized metered dose inhalers and nebulizers are the two platforms routinely employed in the clinical setting. The scarce utilization of the dry powder inhaler (DPI) platform is partly due to the lack of in vivo data that proves optimal delivery and drug efficacy are achievable. Additionally, fitting a DPI in-line to the respiratory circuit is not as straightforward as with the other aerosol delivery platforms. Importantly, there is a common misconception that the warm and humidified inspiratory air in respiratory supports, even for a short exposure, will deteriorate powder formulation compromising its delivery and efficacy. However, some recent studies have dispelled this myth, showing successful delivery of dry powders through the humidified circuit of respiratory supports. Compared with other aerosol delivery devices, the use of DPIs during respiratory supports possesses unique advantages such as rapid delivery and high dose. In this review, we presented in vitro studies showing various setups employing commercial DPIs and effects of ventilator parameters on the aerosol delivery. Inclusion of novel DPIs was also made to illustrate characteristics of an ideal inhaler that would give high lung dose with low powder deposition loss in tracheal tubes and respiratory circuits. Clinical trials are urgently needed to confirm the benefits of administration of dry powders in ventilated patients, thus enabling translation of powder delivery into practice.

12.
Int J Pharm ; 602: 120608, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-33862136

Spray drying is a rapid method for converting a liquid feed into dried particles for inhalation aerosols. Lactose is a major inhalation excipient used in spray-dried (SD) formulations. However, SD powders produced from solutions are usually amorphous hence unstable to moisture. This problem can potentially be minimized by spray drying a suspension (instead of solution) containing crystalline lactose particles and dissolved drugs. In the present study, the suspension formulation containing dissolved budesonide (BUD) or rifampicin (RIF) and suspended lactose crystals in isopropanol alcohol (IPA) were produced. For comparison, powders were also produced from solution formulations containing the same proportions of drug and lactose dissolved in 50:50 IPA/water as controls. These SD powders were stored at 25 °C/60% RH and 40 °C/75% RH for six months. The particulate properties and in vitro dispersion performance were examined at various storage time points. All powders obtained from spray drying of solutions recrystallized after one week of storage at 25 °C/60% RH. In contrast, SD BUD-lactose obtained from suspension did not change until after three-months of storage when the particle size increased gradually with morphology change and yet the crystallinity remained the same as determined by X-ray powder diffraction. For the SD RIF-lactose obtained from suspension, both particulate properties and in vitro powder dispersion performance showed no significant difference before and after storage at both storage conditions. To conclude, this is the first study to show that SD powder formulations obtained from suspensions containing lactose crystals demonstrated superior storage stability performance, which is desirable for inhaled powders.


Lactose , Administration, Inhalation , Aerosols , Drug Compounding , Particle Size , Powders
13.
Int J Pharm ; 597: 120307, 2021 Mar 15.
Article En | MEDLINE | ID: mdl-33540019

Pulmonary route is the main route of drug delivery for patients with asthma and chronic obstructive pulmonary diseases, offering several advantages over the oral route. Determining the amount of drug deposited onto various parts of the respiratory tract allows for a good correlation to clinical efficacy of inhalation drug devices. However, current in vitro cascade impactors measure only the aerodynamic particle size distribution, which does not truly represent the in vivo deposition pattern in human respiratory tract. In this study, a human upper respiratory tract model was fabricated using a 3D printer and subsequently characterized for its dimensional accuracy, surface finishing and air leaking. The effects of using a spacer and/or various airflow rates were also investigated. To assess this in vitro model, the deposition pattern of a model drug, namely, salbutamol sulphate, was tested. The resultant deposition pattern of salbutamol sulphate from a metered dose inhaler at 15 L per minute with the spacer, showed no significant difference from that of a published radiological in vivo study performed in adult humans. In addition, it was also found that the deposition pattern of salbutamol at 35 L per minute was comparable to the results of another published study in human. This in vitro model, showing reasonable in vitro-in vivo correlation, may provide opportunities for personalized medicine in special populations or disease states.


Albuterol , Bronchodilator Agents , Administration, Inhalation , Adult , Aerosols , Humans , Nebulizers and Vaporizers , Printing, Three-Dimensional
14.
J Aerosol Med Pulm Drug Deliv ; 34(1): 20-31, 2021 02.
Article En | MEDLINE | ID: mdl-33179983

Background: Hydroxychloroquine (HCQ) is one of the repurposed drugs proposed for the treatment of coronavirus disease 2019 (COVID-19). However, all the published clinical trials involve oral administration of the drug, although the disease is primarily a respiratory one. Direct inhaled delivery could reduce the side effects associated with oral use and ensure a high concentration of the drug in the lungs. In this study, inhalable HCQ powders were prepared and characterized for potential COVID-19 therapy. Methods: Hydroxychloroquine sulfate (HCQ-sul) was jet milled (JM) followed by conditioning by storage at different relative humidities (43%, 53%, 58%, and 75% RHs) for 7 days. The solid-state properties, including particle morphology and size distribution, crystallinity, and vapor moisture profiles of HCQ-sul samples, were characterized by scanning electron microscopy, laser diffraction, X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, and dynamic water vapor sorption. The aerosol performance of the HCQ-sul powders was assessed using a medium-high resistance Osmohaler coupling to a next-generation impactor (NGI) at a flow rate of 60 L/min. Results: The jet-milled powder showed a volume median diameter of 1.7 µm (span 1.5) and retained the same crystalline form as the raw HCQ-sul. A small amount of amorphous materials was present in the jet-milled HCQ-sul, which was convertible to the stable, crystalline state after conditioning at 53%, 58%, and 75% RH. The recovered fine particle fraction (FPF)recovered and the emitted fine particle fraction (FPFemitted) of the HCQ-sul sample immediately after jet milling and the samples after conditioning at 43%, 53%, and 58% RH were similar at ∼43% and 61%, respectively. In contrast, the sample having conditioned at 75%RH showed lower corresponding values at 33% and 26% respectively, due to the formation of solid bridges caused by excessive moisture. Conclusion: Inhalable crystalline powders of HCQ-sul were successfully prepared, which can be used for clinical testing as a potential inhaled COVID-19 treatment.


COVID-19 Drug Treatment , Hydroxychloroquine/administration & dosage , SARS-CoV-2 , Administration, Inhalation , Calorimetry, Differential Scanning , Humans , Particle Size , Powders , X-Ray Diffraction
15.
Eur J Pharm Biopharm ; 157: 47-58, 2020 Dec.
Article En | MEDLINE | ID: mdl-33065219

Inflammation, the major hallmark of all chronic respiratory diseases is generally managed by inhaled corticosteroids. However, long term high dose treatment can result in significant side effects. Hence, there is a medical need for non-steroidal anti-inflammatory therapies to address airway inflammation. Phospholipids have been shown to reduce inflammation in several inflammatory conditions; however, their clinical translation has been limited to liposomal formulations traditionally used as drug carriers and their biological activity has not been investigated. Here we report the first application of empty liposomes as an anti-inflammatory treatment in airway inflammation. In the current study, liposomes (UTS-001) were prepared from cholesterol and a synthetic phospholipid (DOPC). The formulation was characterised in terms of size, charge, polydispersity index, morphology and stability as colloidal suspension and freeze-dried nanoparticles. Time-dependant uptake of UTS-001 in airway epithelial cells was observed which was inhibited by nystatin demonstrating that the uptake is via the caveolae pathway. In-vitro, in primary nasal epithelial cells, UTS-001 treatment successfully attenuated IL-6 levels following TNF-α stimulation. Consistent with the in-vitro findings, in-vivo, in the ovalbumin model of allergic airway inflammation, UTS-001 significantly reduced total immune cell counts in bronchoalveolar lavage fluid and reduced airway hyperresponsiveness in response to increasing doses of methacholine challenge. Therefore, our results establish UTS-001 as a potential anti-inflammatory treatment that may be useful as a therapeutic for lung inflammatory diseases.


Anti-Inflammatory Agents/pharmacology , Cholesterol/pharmacology , Nasal Mucosa/drug effects , Phosphatidylcholines/pharmacology , Pneumonia/prevention & control , Respiratory Hypersensitivity/prevention & control , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Cell Line , Cholesterol/administration & dosage , Cholesterol/chemistry , Colloids , Disease Models, Animal , Drug Compounding , Female , Humans , Interleukin-6/metabolism , Liposomes , Mice, Inbred C57BL , Nanoparticles , Nasal Mucosa/metabolism , Ovalbumin , Phosphatidylcholines/administration & dosage , Phosphatidylcholines/chemistry , Pneumonia/chemically induced , Pneumonia/metabolism , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Tumor Necrosis Factor-alpha/pharmacology
16.
Int J Pharm ; 591: 119984, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-33069893

Lactose is widely used as an approved excipient for dry powder inhaler (DPI) products. Spray drying technique is a rapid method for converting a liquid feed into inhalable dried particles. However, spray-dried (SD) lactose powders produced from solutions are mostly amorphous and particularly unstable when exposed to moisture. In the present study, we explored the use of spray drying suspensions containing crystalline lactose particles in an organic solvent, and investigated the physicochemical properties of the resulting powders. The solution formulation was spray dried as a control. Two conditioned crystalline lactose samples were used for suspension formulations: Lactohale (LH) 300 lactose and jet-milled (JM) lactose micronized from LH300. The suspension formulations each contained 12 mg/ml suspended crystalline lactose particles (either LH300 or JM lactose) in isopropyl alcohol. The solution formulation contained 60 mg/ml lactose in water. The SD powders were stored under 25 °C/60% RH and 40 °C/75% RH for 3 months. The particulate properties and in vitro dispersion performance were examined at various time points. The SD lactose obtained from solution recrystallized and was no longer dispersible after 1-day storage at both storage conditions. The suspension SD JM lactose powder showed deterioration in the particulate properties and dispersibility over time, but more gradually. In contrast, the SD LH300 powder was stable, with its particulate properties and dispersion performance (FPF: ~12%) remaining the same after 3-months storage at 25 °C/60% RH. The SD LH300 stored at 40 °C/75% RH showed no change in particulate properties, but the FPF decreased over 3 months. Overall, SD lactose powders obtained from suspension demonstrated superior stability performance compared to SD lactose obtained from solution.


Lactose , Spray Drying , Administration, Inhalation , Aerosols , Dry Powder Inhalers , Lung , Particle Size , Powders , Solvents , Suspensions
17.
Br J Pharmacol ; 177(18): 4096-4112, 2020 09.
Article En | MEDLINE | ID: mdl-32668011

Cough is an adverse effect that may hinder the delivery of drugs into the lungs. Chemical or mechanical stimulants activate the transient receptor potential in some airway afferent nerves (C-fibres or A-fibres) to trigger cough. Types of inhaler device and drug, dose, excipients and formulation characteristics, including pH, tonicity, aerosol output and particle size may trigger cough by stimulating the cough receptors. Release of inflammatory mediators may increase the sensitivity of the cough receptors to stimulants. The cough-provoking effect of aerosols is enhanced by bronchoconstriction in diseased airways and reduces drug deposition in the target pulmonary regions. In this article, we review the factors by which inhalation products may cause cough.


Administration, Inhalation , Bronchoconstriction , Cough , Aerosols/therapeutic use , Cough/chemically induced , Humans , Lung , Particle Size
18.
Bioeng Transl Med ; 5(2): e10159, 2020 May.
Article En | MEDLINE | ID: mdl-32440564

Recent heightened interest in inhaled bacteriophage (phage) therapy for combating antibacterial resistance in pulmonary infections has led to the development of phage powder formulations. Although phages have been successfully bioengineered into inhalable powders with preserved bioactivity, the stabilization mechanism is yet unknown. This paper reports the first study investigating the stabilization mechanism for phages in these powders. Proteins and other biologics are known to be preserved in dry state within a glassy sugar matrix at storage temperatures (T s) at least ~50°C below the glass transition temperature (T g). This is because at (T g - T s) >50°C, molecules are sufficiently immobilized with reduced reactivity. We hypothesized that this glass stabilization mechanism may also be applicable to phages comprising mostly of proteins. In this study, spray dried powders of Pseudomonas phage PEV20 containing lactose and leucine as excipients were stored at 5, 25 or 50°C and 15 or 33% relative humidity (RH), followed by assessment of bioactivity (PEV20 stability) and physical properties. PEV20 was stable with negligible titer loss after storage at 5°C/15% RH for 250 days, while storage at 33% RH caused increased titer losses of 1 log10 and 3 log10 at 5 and 25°C, respectively. The plasticizing effect of water at 33% RH lowered the T g by 30°C, thus narrowing the gap between T s and T g to 19-28°C, which was insufficient for glass stabilization. In contrast, the (T g - T s) values were higher (range, 46-65°C) under the drier condition of 15% RH, resulting in the improved stability which corroborated with the vitrification hypothesis. Furthermore, phage remained stable (≤1 log10) when the (T g - T s) value lay between 26-48°C, but became inactivated as the value fell below 20°C. In conclusion, this study demonstrated that phage can be sufficiently stabilized in spray dried powders by keeping the (T g - T s) value above 46°C, thus supporting the vitrification hypothesis that phages are stabilized by immobilization inside a rigid glassy sugar matrix. These findings provide a guide to better manufacture and storage practices of inhaled phage powder products using for translational medicines.

19.
Int J Pharm ; 580: 119196, 2020 Apr 30.
Article En | MEDLINE | ID: mdl-32145340

Conventional nebulisation has the disadvantages of low aerosol output rate and potential damage to macromolecules due to high shear (jet nebulisation) or cavitation (ultrasonic nebulisation). HYDRA (HYbriD Resonant Acoustics) technology has been shown to overcome these problems by using a hybrid combination of surface and bulk sound waves to generate the aerosol droplets. We report the first in vivo human lung deposition study on such droplets. Twelve healthy adult subjects inhaled saline aerosols radiolabelled with technetium-99 m complexed with diethylene triamine penta-acetic acid (99mTc-DTPA). The distribution of the aerosolised droplets in the lungs was imaged by single photon emission computed tomography combined with low dose computed tomography (SPECT/CT). The volume median diameter and geometric standard deviation of the droplets were 1.32 ± 0.027 µm and 2.06 ± 0.040, respectively. The mean delivery efficiency from the nebuliser into the body was 51.2%. About 89.1 ± 4.3% and 2.3 ± 1.4% of the inhaled radiolabelled dose deposited in the lungs and oropharynx, respectively. The deposition was symmetrical and diffusive between the two lungs, with a mean penetration index of 0.82. Thus, the prototype HYDRA nebuliser showed excellent in vivo aerosol deposition performance, demonstrating its potential to be further developed for clinical applications.


Lung/diagnostic imaging , Lung/metabolism , Nebulizers and Vaporizers , Sound , Technetium Tc 99m Pentetate/metabolism , Technology, Pharmaceutical/methods , Administration, Inhalation , Adult , Aerosols/administration & dosage , Aerosols/metabolism , Female , Humans , Lung/drug effects , Male , Single Photon Emission Computed Tomography Computed Tomography/methods , Technetium Tc 99m Pentetate/administration & dosage , Technology, Pharmaceutical/instrumentation , Tissue Distribution/drug effects , Tissue Distribution/physiology , Tomography, Emission-Computed, Single-Photon/methods , Young Adult
20.
Eur J Pharm Biopharm ; 149: 238-247, 2020 Apr.
Article En | MEDLINE | ID: mdl-32112895

While nanoparticulate drugs for deep lung delivery hold promise for particular disease treatments, their size-related physical instability and tendency of being exhaled during breathing remain major challenges to their inhaled formulation development. Here we report a viable method for converting drug nanosuspensions into inhalable, stable and redispersible nano-agglomerates through combined in-situ thermal gelation and spray drying. Itraconazole (ITZ) nanosuspensions were prepared by flash nanoprecipitation, and co-spray dried with two different grades of the gel-forming polymer, methylcellulose (MC M20 and MC M450) as protectants. MC M20 was found superior in protecting ITZ nanoparticles against thermal stress (through nanoparticle entrapment within its gel network structure) during spray drying. In terms of redispersibility, an Sf/Si ratio (i.e., ratio of nanoparticle sizes after and before spray drying) of unity (1.02 ± 0.03), reflecting full particle size preservation, was achieved by optimizing the suspending medium content and spray drying parameters. Formulation components, nanosuspension concentration and spray drying parameters all showed a significant impact on the aerosol performance of the resulting agglomerates, but an absence of defined trends or correlations. Overall, the MC-protected nano-agglomerates displayed excellent in-vitro aerosol performance with fine particle fractions higher than 50% and mass median aerodynamic diameters within the 2-3 µm range, which are ideal for deep lung delivery.


Antifungal Agents/administration & dosage , Drug Delivery Systems , Itraconazole/administration & dosage , Nanoparticles , Administration, Inhalation , Aerosols , Antifungal Agents/chemistry , Gels , Itraconazole/chemistry , Lung/metabolism , Methylcellulose/chemistry , Particle Size , Suspensions , Technology, Pharmaceutical
...