Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(31): 41704-41715, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056583

RESUMEN

In this work, the impact of a tungsten oxide (WO3) seed and capping layer for ferroelectric La-doped (Hf, Zr)O2 (La:HZO) based capacitors, designed with back-end-of-line (BEOL) compatibility, is systematically investigated. The WO3 capping layer supplies oxygen to the La:HZO layer throughout the fabrication process and during device cycling. This facilitates the annihilation of oxygen vacancies (Vo) within the La:HZO layer, thereby stabilizing its ferroelectric orthorhombic phase and resulting in an increase of the remanent polarization (Pr) value in the capacitor. Moreover, the effectiveness of the WO3 capping layer depends on the seed layer of the HZO film, suggesting that proper combination of the seed and capping layers should be employed to maximize the ferroelectric response. Finally, a TiN/TiO2 seed layer/La:HZO/WO3 capping layer/TiN capacitor is successfully fabricated and optimized by a complete set of atomic layer deposition (ALD) processes, achieving a superior 2Pr value and endurance value of more than 109 cycles at an electric field of 2.5 MV/cm. The WO3 capping layer is anticipated to offer a viable solution for doped HZO capacitors with reduced thickness, addressing the challenge of elevated Vo levels that favor the tetragonal phase and result in low 2Pr values.

2.
ACS Appl Mater Interfaces ; 13(20): 23915-23927, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998226

RESUMEN

Ruthenium (Ru) thin films deposited via atomic layer deposition (ALD) with a normal sequence and discrete feeding method (DFM) and their performance as a bottom electrode of dynamic random-access memory (DRAM) capacitors were compared. The DFM-ALD was performed by dividing the Ru feeding and purge steps of the conventional ALD process into four steps (shorter feeding time + purge time). The surface morphology of the Ru films was improved significantly with the DFM-ALD, and the preferred orientation of the Ru films was changed from relatively random to a <101>-oriented direction. Under the DFM-ALD condition, the higher susceptibility of oxygen atoms to the Ru electrode resulted in a higher proportion of the RuO2 formation on the Ru film surface during the subsequent TiO2 ALD process. This higher RuO2 portion leads to higher crystallinity of the local-epitaxially grown TiO2 films with a rutile phase. Such improvement also decreased the interfacial component of equivalent oxide thickness (EOTi) by ∼0.1 nm compared with the cases on sputtered Ru film, which showed an even smoother surface morphology. Consequently, the minimum EOT values when the Ru bottom electrodes deposited via DFM-ALD were adopted were 0.76 and 0.48 nm for TiO2 and Al-doped TiO2 films, respectively, while still satisfying the DRAM leakage current density specification (<10-7 A/cm2 at a capacitor voltage of 0.8 V).

3.
ACS Appl Mater Interfaces ; 10(48): 41544-41551, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30418741

RESUMEN

The atomic layer deposition process of SrTiO3 (STO) films at 230 °C was studied with Sr(iPr3Cp)2 and Ti(CpMe5)(OMe)3 (Pr, Cp, and Me are propyl, cyclopentadienyl, and methyl groups, respectively) on Ru substrates. The growth behavior and properties of STO films grown at 230 °C were compared with those deposited at 370 °C. With the limited over-reaction of the Sr precursor during the initial growth stage at a lower temperature, the cation composition was more controllable, and the surface morphology after crystallization annealing at 650 °C had more uniform grains with fewer defects. Here, the excess reaction of the Sr precursor means the chemical-vapor-deposition-like growth of the SrO component mediated through the thermal decomposition of the adsorbed Sr precursor molecules. It was by the reaction of the Sr precursor with the oxygen supplied from the partly oxidized Ru substrate. The second STO was grown at 370 °C (main layer) on the annealed first STO layer (crystallized seed layer) to lead to the in situ crystallization of the main layer. Due to the improved microstructure of STO films induced by the seed layer deposited at 230 °C, the bulk dielectric constant of 167 was obtained for the main layer, which was higher than the value of 101 where the seed layer was deposited at 370 °C, even though the crystallization annealing condition of the seed layer and the deposition condition of the main layer were consistent. The seed layer grown at 230 °C, however, had a lower dielectric constant of only ∼49, whereas the high-temperature seed layer had a dielectric constant of ∼106. Therefore, the low-temperature seed layer posed a severe limitation in acquiring an advanced capacitor property with the involvement of a low-dielectric interfacial layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA