Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Sci Total Environ ; 926: 171918, 2024 May 20.
Article En | MEDLINE | ID: mdl-38522553

The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.


Desulfovibrio , Groundwater , Uranium , Bacteria , Uranium/analysis , RNA, Ribosomal, 16S/genetics , Prospective Studies , Groundwater/chemistry , Sulfates/analysis
2.
J Hazard Mater ; 465: 133318, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38154187

Bentonite is a promising buffer material for constructing spent nuclear fuel (SNF) repositories. However, indigenous microbes in bentonite can be introduced to the repository and subsequent sealing of the repository develops anoxic conditions over time which may stimulate fermentation and anaerobic respiration, possibly affecting bentonite structure and SNF repository stability. Moreover, the microbial activity in the bentonite can be impacted by the heat generated from radionuclides decay. Therefore, to investigate the temperature effect on microbial activities in bentonite, we created microcosms with WRK bentonil (a commercial bentonite) using lactate as the electron donor, and sulfate and/or ferrihydrite (Fe(III)) as electron acceptors with incubation at 18 â„ƒ and 50 â„ƒ. Indigenous WRK microbes reduced sulfate and Fe(III) at both temperatures but with different rates and extents. Lactate was metabolized to acetate at both temperatures, but only to propionate at 18 â„ƒ during early-stage microbial fermentation. More Fe(III)-reduction at 18 â„ƒ but more sulfate-reduction at 50 â„ƒ was observed. Thermophilic and/or metabolically flexible microbes were involved in both fermentation and Fe(III)/sulfate reduction. Our findings illustrate the necessity of considering the influence of temperature on microbial activities when employing bentonite as an engineered buffer material in construction of SNF repository barriers.


Bentonite , Ferric Compounds , Bentonite/chemistry , Ferric Compounds/metabolism , Temperature , Sulfates/metabolism , Lactates , Oxidation-Reduction
3.
Chemosphere ; 287(Pt 3): 132266, 2022 Jan.
Article En | MEDLINE | ID: mdl-34543898

Here we show an innovative way to effectively scavenge highly mobile radioiodide and to dramatically reduce its waste volume through a spontaneous phase transformation. Under an anaerobic condition, as metallic copper (II) was favorably associated with bicarbonate (HCO3-) in solution, a cupriferous carbonate compound (malachite) quickly formed, which was redox-sensitive and transformable to a compact crystal of CuI (marshite). The formation of CuI crystal was principally led by the spontaneous Cu-I redox reaction centering around the copper phase over the presence of sulfate (SO42-). The completely transformed CuI crystal was poorly soluble in water and grew to large microcrystals (∼µm) via a remarkable selectivity for I-. Interestingly, this redox-induced iodide crystallization was rather promoted over the existence of anionic competitors (e.g., HCO3- and SO42-), which usually exist in wastewater and natural water. Unlike the conventional methods, these competing anions positively behaved in our system by supporting that the initial malachite was more apt to be reactive to largely attract highly mobile I-. Under practical environments with various anions, such a selective I- uptake and fixation within a compact crystalline space will be a promising way to effectively remove I- in a great capacity.


Copper , Iodides , Crystallization , Oxidation-Reduction , Sulfates
4.
J Environ Manage ; 285: 112087, 2021 May 01.
Article En | MEDLINE | ID: mdl-33582476

The construction of an underground facility can dramatically change the quality, flow direction, and level of groundwater. It may also impact subsurface microbial composition and activity. Groundwater quality was monitored over eight years in two observational wells near an underground disposal facility on the east coast of South Korea. The results showed dramatic increases in dissolved ions such as O2, Na, Ca, Mg, and SO4 during facility construction. Seepage water samples downgradient from the silos and tunnels, and precipitates deposited along the seepage water flow path were collected to determine the impact inside the disposal facility. X-ray analysis (powder X-ray diffraction (pXRD) and X-ray absorption fine structure (XAFS)) were used to characterize the mineral precipitates. Microbial community composition was determined by 16S rRNA gene sequencing. The seepage water composition was of two types: Ca-Cl and Ca-Na-HCO3. The ratio of Cl and δ18O showed that the Ca-Cl type seepage water was influenced by groundwater mixed with seawater ranging from 2.7% to 15.1%. Various sulfate-reducing bacteria were identified in the Ca-Cl type seepage water, exhibiting relatively high sulfate content from seawater intrusion. Samples from the Ca-Na-HCO3 type seepage water had an extremely high pH (>10) and abundance of Hydrogenophaga. The precipitates observed along the flow path of the seepage water included calcite, ferrihydrite, green rust, and siderite, depending on seepage water chemistry and microbial activity. This study suggests that the construction of underground structures creates distinct, localized geochemical conditions (e.g., high alkalinity, high salinity, and oxic conditions), which may impact microbial communities. These biogeochemical changes may have undesirable large-scale impacts such as water pump clogging. An understanding of the process and long-term monitoring are essential to assess the safety of underground facilities.


Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Minerals , RNA, Ribosomal, 16S/genetics , Republic of Korea , Seawater , Water , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 24(2): 2019-2034, 2017 Jan.
Article En | MEDLINE | ID: mdl-27807785

Although metallic mineral resources are most important in the economy of Mongolia, mining activities with improper management may result in the pollution of stream waters, posing a threat to aquatic ecosystems and humans. In this study, aiming to evaluate potential impacts of metallic mining activities on the quality of a transboundary river (Selenge) in central northern Mongolia, we performed hydrochemical investigations of rivers (Tuul, Khangal, Orkhon, Haraa, and Selenge). Hydrochemical analysis of river waters indicates that, while major dissolved ions originate from natural weathering (especially, dissolution of carbonate minerals) within watersheds, they are also influenced by mining activities. The water quality problem arising from very high turbidity is one of the major environmental concerns and is caused by suspended particles (mainly, sediment and soil particles) from diverse erosion processes, including erosion of river banks along the meandering river system, erosion of soils owing to overgrazing by livestock, and erosion by human activities, such as mining and agriculture. In particular, after passing through the Zaamar gold mining area, due to the disturbance of sediments and soils by placer gold mining, the Tuul River water becomes very turbid (up to 742 Nephelometric Turbidity Unit (NTU)). The Zaamar area is also the contamination source of the Tuul and Orkhon rivers by Al, Fe, and Mn, especially during the mining season. The hydrochemistry of the Khangal River is influenced by heavy metal (especially, Mn, Al, Cd, and As)-loaded mine drainage that originates from a huge tailing dam of the Erdenet porphyry Cu-Mo mine, as evidenced by δ34S values of dissolved sulfate (0.2 to 3.8 ‰). These two contaminated rivers (Tuul and Khangal) merge into the Orkhon River that flows to the Selenge River near the boundary between Mongolia and Russia and then eventually flows into Lake Baikal. Because water quality problems due to mining can be critical, mining activities in central northern Mongolia should be carefully managed to minimize the transboundary movement of aquatic contaminants (in particular, turbidity, dissolved organic carbon, Fe and Al) from mining activities.


Mining , Rivers , Water Pollutants, Chemical/analysis , Agriculture , Environmental Monitoring , Gold , Metals, Heavy/analysis , Mongolia , Soil , Water Quality
6.
J Hazard Mater ; 174(1-3): 307-13, 2010 Feb 15.
Article En | MEDLINE | ID: mdl-19828237

Kinetic and equilibrium sorption experiments were conducted on removal of divalent heavy metals (Pb(II), Cu(II), Zn(II), Cd(II)) and trivalent arsenic (As(III)) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The removal efficiencies of Pb, Cu, Zn, Cd, and As by the scoria (size=0.1-0.2mm, dose=60gL(-1)) were 94, 70, 63, 59, and 14%, respectively, after a reaction time of 24h under a sorbate concentration of 1mM and the solution pH of 5.0. A careful examination on ionic concentrations in sorption batches suggested that sorption behaviors of heavy metals onto scoria are mainly controlled by cation exchange. On the other hand, arsenic appeared to be sensitive to specific sorption onto hematite (a minor constituent of scoria). Equilibrium sorption tests indicated that the removal efficiency for heavy metals increases with increasing pH of aqueous solutions, which is resulted from precipitation as hydroxides. Similarly, multi-component systems containing heavy metals and arsenic showed that the arsenic removal increases with increasing pH of aqueous solutions, which can be attributed to coprecipitation with metal hydroxides. The empirically determined sorption kinetics were well fitted to a pseudo-second order model, while equilibrium sorption data for heavy metals and arsenic onto scoria were consistent with the Langmuir and Freundlich isotherms, respectively. Natural scoria studied in this work is an efficient sorbent for concurrent removal of divalent heavy metals and arsenic.


Arsenic/isolation & purification , Environmental Restoration and Remediation/methods , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Cations, Divalent , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Osmolar Concentration , Solutions , Water
7.
J Environ Qual ; 37(2): 501-8, 2008.
Article En | MEDLINE | ID: mdl-18268314

To investigate the potential use of anion exchange membranes (plant root simulator [PRS] probes) for isotope investigations of the soil sulfur cycle, laboratory experiments were performed to examine the sulfate exchange characteristics and to determine the extent of sulfur and oxygen isotope fractionation during sulfate sorption and desorption on the probes in aqueous solutions and simulated soil solutions. The sulfate-exchange tests in aqueous solutions under varying experimental conditions indicated that the amount of sulfate exchanged onto PRS probes increased with increasing reaction time, initial sulfate concentration, and the number of probes used (= surface area), whereas the percentage of removal of available sulfate was constant irrespective of the initial sulfate concentration. The competition of nitrate and chloride in the solution lowered the amount of exchanged sulfate. The exchange experiments in a simulated soil under water-saturated and water-unsaturated conditions showed that a considerable proportion of the soil sulfate was exchanged by the PRS probes after about 10 d. There was no evidence for significant sulfur and oxygen isotope fractionation between soil sulfate and sulfate recovered from the PRS probes. Therefore, we recommend the use of PRS probes as an efficient and easy way to collect soil water sulfate for determination of its isotope composition.


Anion Exchange Resins , Oxygen Isotopes/analysis , Soil Pollutants/analysis , Sulfates/analysis , Sulfur Isotopes/analysis , Chlorides/analysis , Nitrates/analysis
8.
Sci Total Environ ; 385(1-3): 272-83, 2007 Oct 15.
Article En | MEDLINE | ID: mdl-17655916

High fluoride concentrations (median=4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N=377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocks> or =granitoids > or =complex rock>>volcanic rocks> or =sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO3 type groundwater and lowest in Ca-HCO3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF2). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea.


Fluorine/analysis , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Korea , Thermodynamics , Water Purification , Water Supply/standards
9.
Chemosphere ; 60(10): 1416-26, 2005 Sep.
Article En | MEDLINE | ID: mdl-16054911

We conducted kinetic and equilibrium sorption experiments on removal of Zn(II) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The batch-type kinetic sorption tests under variable conditions indicated that the percentage of Zn(II) removal by scoria increases with decreasing initial Zn(II) concentration, particle size, and sorbate/sorbent ratio. However, the sorption capacity decreases with the decrease of the initial Zn(II) concentration and sorbate/sorbent ratio. Equilibrium sorption tests show that Jeju scoria has a larger capacity and affinity for Zn(II) sorption than commercial powdered activated carbon (PAC); at initial Zn(II) concentrations of more than 10mM, the sorption capacity of Jeju scoria is about 1.5 times higher than that of PAC. The acquired sorption data are better fitted to the Langmuir isotherm than the Freundlich isotherm. Careful examination of ionic concentrations in sorption batches suggests that the sorption behavior is mainly controlled by cation exchange and typically displays characteristics of 'cation sorption'. The Zn(II) removal capacity decreases when solution pH decreases because of the competition with hydrogen ions for sorption sites, while the Zn(II) removal capacity increases under higher pH conditions, likely due to hydroxide precipitation. At an initial Zn(II) concentration of 5.0mM, the removal increases from 70% to 96% with the increase of initial pH from 3.0 to 7.0. We recommend Jeju scoria as an economic and efficient sorbent for Zn(II) in contaminated water.


Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Zinc/isolation & purification , Adsorption , Carbon/chemistry , Hydrogen-Ion Concentration , Minerals/chemistry , Particle Size , Silicates/chemistry , Zinc/chemistry
...