Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Sci Rep ; 14(1): 8998, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637546

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Signal Transduction , Cell Proliferation , Cell Line, Tumor , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
2.
Front Biosci (Landmark Ed) ; 28(7): 133, 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37525918

The second messenger, cyclic adenosine monophosphate (cAMP), is a master regulator of signal transduction that maintains cell homeostasis. A fine balance between cAMP synthesis by adenylyl cyclase and degradation by phosphodiesterases (PDEs) underpins receptor-specific responses. As multiple receptors rely on cAMP for signaling, PDEs shape three-dimensional, localized gradients of the cyclic nucleotide to drive appropriate signaling cascades. Of the 11 PDE families, PDE4, which comprises long, short, and supershort isoforms and a dead-short isoform, is of great interest due to its implication in disease. Aberrant PDE4 expression and post-translational modifications are hallmarks of several clinical indications for which curative treatment is not yet available. While some PDE4-specific small molecule inhibitors directed against the active site are approved for clinical use, they are limited by severe side effects owing to the high degree of conservation of the catalytic domain between over 20 unique isoforms. Some attempts to use the different modular structure that exists between long and shorter isoforms are now bearing success. However, these inhibitors are exclusively aimed at PDE4 long isoforms, which have been the focus of the majority of research in this area. Here, we have summarised literature on the lesser-studied short PDE4 isoforms and provide a record of the discovery, regulation, and disease relevance of this class of enzymes that represent an untapped target for specific inhibition in the future.

3.
Cell Mol Life Sci ; 80(7): 178, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37306762

Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety. The function of PDE4D isoforms in AD and in molecular memory processes per se has remained unresolved. Here, we report the upregulation of specific PDE4D isoforms in transgenic AD mice and hippocampal neurons exposed to amyloid-ß. Furthermore, by means of pharmacological inhibition and CRISPR-Cas9 knockdown, we show that the long-form PDE4D3, -D5, -D7, and -D9 isoforms regulate neuronal plasticity and convey resilience against amyloid-ß in vitro. These results indicate that isoform-specific, next to non-selective, PDE4D inhibition is efficient in promoting neuroplasticity in an AD context. Therapeutic effects of non-selective PDE4D inhibitors are likely achieved through actions on long isoforms. Future research should identify which long PDE4D isoforms should be specifically targeted in vivo to both improve treatment efficacy and reduce side effects.


Alzheimer Disease , Phosphoric Diester Hydrolases , Humans , Animals , Mice , Neurites , Amyloid beta-Peptides , Neurons , Mice, Transgenic , Cyclic Nucleotide Phosphodiesterases, Type 4
...