Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 57
1.
Nat Commun ; 15(1): 4405, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782923

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.


Endothelial Cells , Y-Box-Binding Protein 1 , Zonula Occludens-1 Protein , Animals , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Mice , Humans , Endothelial Cells/metabolism , Stress Granules/metabolism , Neovascularization, Physiologic , Retinal Vessels/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Angiogenesis , Transcription Factors
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38338754

Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.


MicroRNAs , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA, Circular , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Circular/genetics
3.
Bioinformatics ; 40(2)2024 02 01.
Article En | MEDLINE | ID: mdl-38291894

MOTIVATION: Up to 75% of the human genome encodes RNAs. The function of many non-coding RNAs relies on their ability to fold into 3D structures. Specifically, nucleotides inside secondary structure loops form non-canonical base pairs that help stabilize complex local 3D structures. These RNA 3D motifs can promote specific interactions with other molecules or serve as catalytic sites. RESULTS: We introduce PERFUMES, a computational pipeline to identify 3D motifs that can be associated with observable features. Given a set of RNA sequences with associated binary experimental measurements, PERFUMES searches for RNA 3D motifs using BayesPairing2 and extracts those that are over-represented in the set of positive sequences. It also conducts a thermodynamics analysis of the structural context that can support the interpretation of the predictions. We illustrate PERFUMES' usage on the SNRPA protein binding site, for which the tool retrieved both previously known binder motifs and new ones. AVAILABILITY AND IMPLEMENTATION: PERFUMES is an open-source Python package (https://jwgitlab.cs.mcgill.ca/arnaud_chol/perfumes).


Perfume , Humans , Nucleic Acid Conformation , Nucleotide Motifs , Base Pairing , RNA/chemistry
4.
BMC Genomics ; 24(1): 564, 2023 Sep 22.
Article En | MEDLINE | ID: mdl-37736705

BACKGROUND: While numerous studies have described the transcriptomes of extracellular vesicles (EVs) in different cellular contexts, these efforts have typically relied on sequencing methods requiring RNA fragmentation, which limits interpretations on the integrity and isoform diversity of EV-targeted RNA populations. It has been assumed that mRNA signatures in EVs are likely to be fragmentation products of the cellular mRNA material, and the extent to which full-length mRNAs are present within EVs remains to be clarified. RESULTS: Using long-read nanopore RNA sequencing, we sought to characterize the full-length polyadenylated (poly-A) transcriptome of EVs released by human chronic myelogenous leukemia K562 cells. We detected 443 and 280 RNAs that were respectively enriched or depleted in EVs. EV-enriched poly-A transcripts consist of a variety of biotypes, including mRNAs, long non-coding RNAs, and pseudogenes. Our analysis revealed that 10.58% of all EV reads, and 18.67% of all cellular (WC) reads, corresponded to known full-length transcripts, with mRNAs representing the largest biotype for each group (EV = 58.13%, WC = 43.93%). We also observed that for many well-represented coding and non-coding genes, diverse full-length transcript isoforms were present in EV specimens, and these isoforms were reflective-of but often in different ratio compared to cellular samples. CONCLUSION: This work provides novel insights into the compositional diversity of poly-A transcript isoforms enriched within EVs, while also underscoring the potential usefulness of nanopore sequencing to interrogate secreted RNA transcriptomes.


Extracellular Vesicles , Nanopore Sequencing , Humans , Transcriptome , Extracellular Vesicles/genetics , RNA/genetics , RNA, Messenger/genetics , Poly A/genetics
5.
Nucleic Acids Res ; 51(D1): D1549-D1557, 2023 01 06.
Article En | MEDLINE | ID: mdl-36321651

RNA binding proteins (RBPs) are central regulators of gene expression implicated in all facets of RNA metabolism. As such, they play key roles in cellular physiology and disease etiology. Since different steps of post-transcriptional gene expression tend to occur in specific regions of the cell, including nuclear or cytoplasmic locations, defining the subcellular distribution properties of RBPs is an important step in assessing their potential functions. Here, we present the RBP Image Database, a resource that details the subcellular localization features of 301 RBPs in the human HepG2 and HeLa cell lines, based on the results of systematic immuno-fluorescence studies conducted using a highly validated collection of RBP antibodies and a panel of 12 markers for specific organelles and subcellular structures. The unique features of the RBP Image Database include: (i) hosting of comprehensive representative images for each RBP-marker pair, with ∼250,000 microscopy images; (ii) a manually curated controlled vocabulary of annotation terms detailing the localization features of each factor; and (iii) a user-friendly interface allowing the rapid querying of the data by target or annotation. The RBP Image Database is freely available at https://rnabiology.ircm.qc.ca/RBPImage/.


Databases, Factual , Optical Imaging , RNA-Binding Proteins , Humans , Antibodies/metabolism , HeLa Cells , RNA/chemistry , RNA-Binding Proteins/metabolism , Hep G2 Cells
7.
Methods Mol Biol ; 2381: 97-112, 2021.
Article En | MEDLINE | ID: mdl-34590272

Genetic perturbation assays have been crucial to the discovery of molecular pathways that drive diverse biological processes. RNA interference (RNAi)-mediated depletion of gene products represents a powerful means of elucidating gene function, as it allows one to systematically probe the phenotypic effects resulting from the functional loss of specific targets. The relative ease of use of RNAi technologies in cultured cells has allowed the design and implementation of genome-wide investigations to systematically reveal gene function. In this chapter, we describe methods for high-throughput RNAi-mediated loss-of-function studies in cultured cells of Drosophila melanogaster. First, we describe the in vitro synthesis of double stranded RNAs (dsRNAs) from a genome-wide Drosophila RNAi library. Next, we outline the procedures used to carry out high-throughput RNAi screens using a cell bathing approach and high-content screening microscopy, illustrating how these experiments can be utilized to study specific cellular contexts, such as cellular stress. Finally, we illustrate some approaches commonly employed to validate the depletion of identified gene candidates.


Drosophila melanogaster , Animals , Cells, Cultured , Drosophila melanogaster/genetics , RNA Interference , RNA, Double-Stranded/genetics
8.
Methods Mol Biol ; 2381: 267-284, 2021.
Article En | MEDLINE | ID: mdl-34590282

Genetic mutations, whether they occur within protein-coding or noncoding regions of the genome, can affect various aspects of gene expression by influencing the complex network of intra- and intermolecular interactions that occur between cellular nucleic acids and proteins. One aspect of gene expression control that can be impacted is the intracellular trafficking and translation of mRNA molecules. To study the occurrence and dynamics of translational regulation, researchers have developed approaches such as genome-wide ribosome profiling and artificial reporters that enable single molecule imaging. In this paper, we describe a complementary and optimized approach that combines puromycin labeling with a proximity ligation assay (Puro-PLA) to define sites of translation of specific mRNAs in tissues or cells. This method can be used to study the mechanisms driving the translation of select mRNAs and to access the impact of genetic mutations on local protein synthesis. This approach involves the treatment of cell or tissue specimens with puromycin to label nascently translated peptides, rapid fixation, followed by immunolabeling with appropriate primary and secondary antibodies coupled to PLA oligonucleotide probes, ligation, amplification, and signal detection via fluorescence microscopy. Puro-PLA can be performed at small scale in individual tubes or in chambered slides, or in a high-throughput setup with 96-well plate, for both in situ and in vitro experimentation.


Protein Biosynthesis , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Polyesters , Proteins/metabolism , Puromycin , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
9.
Cell Rep ; 36(10): 109685, 2021 09 07.
Article En | MEDLINE | ID: mdl-34496257

Persistent cytoplasmic aggregates containing RNA binding proteins (RBPs) are central to the pathogenesis of late-onset neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). These aggregates share components, molecular mechanisms, and cellular protein quality control pathways with stress-induced RNA granules (SGs). Here, we assess the impact of stress on the global mRNA localization landscape of human pluripotent stem cell-derived motor neurons (PSC-MNs) using subcellular fractionation with RNA sequencing and proteomics. Transient stress disrupts subcellular RNA and protein distributions, alters the RNA binding profile of SG- and ALS-relevant RBPs and recapitulates disease-associated molecular changes such as aberrant splicing of STMN2. Although neurotypical PSC-MNs re-establish a normal subcellular localization landscape upon recovery from stress, cells harboring ALS-linked mutations are intransigent and display a delayed-onset increase in neuronal cell death. Our results highlight subcellular molecular distributions as predictive features and underscore the utility of cellular stress as a paradigm to study ALS-relevant mechanisms.


Amyotrophic Lateral Sclerosis/metabolism , Cell Death/physiology , Motor Neurons/metabolism , RNA, Messenger/metabolism , Amyotrophic Lateral Sclerosis/genetics , Cell Death/genetics , Cytoplasmic Granules/metabolism , Cytoplasmic Ribonucleoprotein Granules/metabolism , Cytoplasmic Ribonucleoprotein Granules/pathology , DNA-Binding Proteins/metabolism , Humans , Mutation/genetics , RNA-Binding Proteins/metabolism
11.
Dev Cell ; 54(6): 691-693, 2020 09 28.
Article En | MEDLINE | ID: mdl-32991835

Cellular distribution of biomolecules is important for regulating their function. In this issue of Developmental Cell, Chouaib et al., 2020 employ genetically tagged human cell lines to investigate the subcellular distribution of specific mRNAs and their encoded proteins, revealing several instances of localized translation with distinctive regulatory implications.


Protein Biosynthesis , RNA , Humans , RNA, Messenger/metabolism
12.
Nature ; 583(7818): 711-719, 2020 07.
Article En | MEDLINE | ID: mdl-32728246

Many proteins regulate the expression of genes by binding to specific regions encoded in the genome1. Here we introduce a new data set of RNA elements in the human genome that are recognized by RNA-binding proteins (RBPs), generated as part of the Encyclopedia of DNA Elements (ENCODE) project phase III. This class of regulatory elements functions only when transcribed into RNA, as they serve as the binding sites for RBPs that control post-transcriptional processes such as splicing, cleavage and polyadenylation, and the editing, localization, stability and translation of mRNAs. We describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. Integrative analyses using five assays identify RBP binding sites on RNA and chromatin in vivo, the in vitro binding preferences of RBPs, the function of RBP binding sites and the subcellular localization of RBPs, producing 1,223 replicated data sets for 356 RBPs. We describe the spectrum of RBP binding throughout the transcriptome and the connections between these interactions and various aspects of RNA biology, including RNA stability, splicing regulation and RNA localization. These data expand the catalogue of functional elements encoded in the human genome by the addition of a large set of elements that function at the RNA level by interacting with RBPs.


RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Transcriptome/genetics , Alternative Splicing/genetics , Base Sequence , Binding Sites , Cell Line , Chromatin/genetics , Chromatin/metabolism , Databases, Genetic , Female , Gene Knockdown Techniques , Humans , Intracellular Space/genetics , Male , Protein Binding , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Substrate Specificity
13.
Nature ; 583(7818): 699-710, 2020 07.
Article En | MEDLINE | ID: mdl-32728249

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.


DNA/genetics , Databases, Genetic , Genome/genetics , Genomics , Molecular Sequence Annotation , Registries , Regulatory Sequences, Nucleic Acid/genetics , Animals , Chromatin/genetics , Chromatin/metabolism , DNA/chemistry , DNA Footprinting , DNA Methylation/genetics , DNA Replication Timing , Deoxyribonuclease I/metabolism , Genome, Human , Histones/metabolism , Humans , Mice , Mice, Transgenic , RNA-Binding Proteins/genetics , Transcription, Genetic/genetics , Transposases/metabolism
14.
J Cell Sci ; 133(14)2020 07 23.
Article En | MEDLINE | ID: mdl-32576666

Staufen1 (STAU1) is an RNA-binding protein involved in the post-transcriptional regulation of mRNAs. We report that a large fraction of STAU1 localizes to the mitotic spindle in colorectal cancer HCT116 cells and in non-transformed hTERT-RPE1 cells. Spindle-associated STAU1 partly co-localizes with ribosomes and active sites of translation. We mapped the molecular determinant required for STAU1-spindle association within the first 88 N-terminal amino acids, a domain that is not required for RNA binding. Interestingly, transcriptomic analysis of purified mitotic spindles revealed that 1054 mRNAs and the precursor ribosomal RNA (pre-rRNA), as well as the long non-coding RNAs and small nucleolar RNAs involved in ribonucleoprotein assembly and processing, are enriched on spindles compared with cell extracts. STAU1 knockout causes displacement of the pre-rRNA and of 154 mRNAs coding for proteins involved in actin cytoskeleton organization and cell growth, highlighting a role for STAU1 in mRNA trafficking to spindle. These data demonstrate that STAU1 controls the localization of subpopulations of RNAs during mitosis and suggests a novel role of STAU1 in pre-rRNA maintenance during mitosis, ribogenesis and/or nucleoli reassembly.


Cytoskeletal Proteins , RNA , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
15.
Cell Rep ; 30(10): 3339-3352.e6, 2020 03 10.
Article En | MEDLINE | ID: mdl-32160541

Overlapping genes are prevalent in most genomes, but the extent to which this organization influences regulatory events operating at the post-transcriptional level remains unclear. Studying the cen and ik2 genes of Drosophila melanogaster, which are convergently transcribed as cis-natural antisense transcripts (cis-NATs) with overlapping 3' UTRs, we found that their encoded mRNAs strikingly co-localize to centrosomes. These transcripts physically interact in a 3' UTR-dependent manner, and the targeting of ik2 requires its 3' UTR sequence and the presence of cen mRNA, which serves as the main driver of centrosomal co-localization. The cen transcript undergoes localized translation in proximity to centrosomes, and its localization is perturbed by polysome-disrupting drugs. By interrogating global fractionation-sequencing datasets generated from Drosophila and human cellular models, we find that RNAs expressed as cis-NATs tend to co-localize to specific subcellular fractions. This work suggests that post-transcriptional interactions between RNAs with complementary sequences can dictate their localization fate in the cytoplasm.


Centrosome/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , I-kappa B Kinase/metabolism , RNA, Antisense/metabolism , Animals , Conserved Sequence , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Gene Expression Regulation , Humans , I-kappa B Kinase/genetics , Oocytes/metabolism , Polyribosomes/metabolism , Protein Biosynthesis , RNA Transport , RNA, Antisense/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Nucleic Acids Res ; 48(D1): D166-D173, 2020 01 08.
Article En | MEDLINE | ID: mdl-31724725

Protein-RNA interactions are essential for controlling most aspects of RNA metabolism, including synthesis, processing, trafficking, stability and degradation. In vitro selection methods, such as RNAcompete and RNA Bind-n-Seq, have defined the consensus target motifs of hundreds of RNA-binding proteins (RBPs). However, readily available information about the distribution features of these motifs across full transcriptomes was hitherto lacking. Here, we introduce oRNAment (o RNA motifs enrichment in transcriptomes), a database that catalogues the putative motif instances of 223 RBPs, encompassing 453 motifs, in a transcriptome-wide fashion. The database covers 525 718 complete coding and non-coding RNA species across the transcriptomes of human and four prominent model organisms: Caenorhabditis elegans, Danio rerio, Drosophila melanogaster and Mus musculus. The unique features of oRNAment include: (i) hosting of the most comprehensive mapping of RBP motif instances to date, with 421 133 612 putative binding sites described across five species; (ii) options for the user to filter the data according to a specific threshold; (iii) a user-friendly interface and efficient back-end allowing the rapid querying of the data through multiple angles (i.e. transcript, RBP, or sequence attributes) and (iv) generation of several interactive data visualization charts describing the results of user queries. oRNAment is freely available at http://rnabiology.ircm.qc.ca/oRNAment/.


Databases, Genetic , RNA-Binding Proteins/metabolism , RNA/chemistry , Animals , Binding Sites , Caenorhabditis elegans/genetics , Drosophila melanogaster/genetics , Humans , Mice , Nucleotide Motifs , RNA/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Transcriptome , Zebrafish/genetics
17.
Adv Exp Med Biol ; 1203: 165-194, 2019.
Article En | MEDLINE | ID: mdl-31811635

Messenger RNA (mRNA) is a fundamental intermediate in the expression of proteins. As an integral part of this important process, protein production can be localized by the targeting of mRNA to a specific subcellular compartment. The subcellular destination of mRNA is suggested to be governed by a region of its primary sequence or secondary structure, which consequently dictates the recruitment of trans-acting factors, such as RNA-binding proteins or regulatory RNAs, to form a messenger ribonucleoprotein particle. This molecular ensemble is requisite for precise and spatiotemporal control of gene expression. In the context of RNA localization, the description of the binding preferences of an RNA-binding protein defines a motif, and one, or more, instance of a given motif is defined as a localization element (zip code). In this chapter, we first discuss the cis-regulatory motifs previously identified as mRNA localization elements. We then describe motif representation in terms of entropy and information content and offer an overview of motif databases and search algorithms. Finally, we provide an outline of the motif topology of asymmetrically localized mRNA molecules.


Computational Biology , RNA, Messenger , RNA-Binding Proteins , Algorithms , Amino Acid Motifs , Databases as Topic , RNA, Messenger/metabolism
18.
Bioinformatics ; 35(14): i333-i342, 2019 07 15.
Article En | MEDLINE | ID: mdl-31510698

MOTIVATION: Messenger RNA subcellular localization mechanisms play a crucial role in post-transcriptional gene regulation. This trafficking is mediated by trans-acting RNA-binding proteins interacting with cis-regulatory elements called zipcodes. While new sequencing-based technologies allow the high-throughput identification of RNAs localized to specific subcellular compartments, the precise mechanisms at play, and their dependency on specific sequence elements, remain poorly understood. RESULTS: We introduce RNATracker, a novel deep neural network built to predict, from their sequence alone, the distributions of mRNA transcripts over a predefined set of subcellular compartments. RNATracker integrates several state-of-the-art deep learning techniques (e.g. CNN, LSTM and attention layers) and can make use of both sequence and secondary structure information. We report on a variety of evaluations showing RNATracker's strong predictive power, which is significantly superior to a variety of baseline predictors. Despite its complexity, several aspects of the model can be isolated to yield valuable, testable mechanistic hypotheses, and to locate candidate zipcode sequences within transcripts. AVAILABILITY AND IMPLEMENTATION: Code and data can be accessed at https://www.github.com/HarveyYan/RNATracker. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Neural Networks, Computer , Deep Learning , Protein Structure, Secondary , RNA, Messenger
19.
Sci Rep ; 9(1): 13779, 2019 09 24.
Article En | MEDLINE | ID: mdl-31551467

In Drosophila melanogaster there are two genes encoding ribosomal protein S5, RpS5a and RpS5b. Here, we demonstrate that RpS5b is required for oogenesis. Females lacking RpS5b produce ovaries with numerous developmental defects that undergo widespread apoptosis in mid-oogenesis. Females lacking germline RpS5a are fully fertile, but germline expression of interfering RNA targeting germline RpS5a in an RpS5b mutant background worsened the RpS5b phenotype and blocked oogenesis before egg chambers form. A broad spectrum of mRNAs co-purified in immunoprecipitations with RpS5a, while RpS5b-associated mRNAs were specifically enriched for GO terms related to mitochondrial electron transport and cellular metabolic processes. Consistent with this, RpS5b mitochondrial fractions are depleted for proteins linked to oxidative phosphorylation and mitochondrial respiration, and RpS5b mitochondria tended to form large clusters and had more heterogeneous morphology than those from controls. We conclude that RpS5b-containing ribosomes preferentially associate with particular mRNAs and serve an essential function in oogenesis.


Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Oogenesis/genetics , Protein Isoforms/genetics , RNA/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics , Animals , Animals, Genetically Modified/genetics , Apoptosis/genetics , Female , Germ Cells/physiology , Mitochondria/genetics , Oocytes/physiology , Ovary/physiology
20.
Neuron ; 103(5): 802-819.e11, 2019 09 04.
Article En | MEDLINE | ID: mdl-31272829

Stress granules (SGs) form during cellular stress and are implicated in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). To yield insights into the role of SGs in pathophysiology, we performed a high-content screen to identify small molecules that alter SG properties in proliferative cells and human iPSC-derived motor neurons (iPS-MNs). One major class of active molecules contained extended planar aromatic moieties, suggesting a potential to intercalate in nucleic acids. Accordingly, we show that several hit compounds can prevent the RNA-dependent recruitment of the ALS-associated RNA-binding proteins (RBPs) TDP-43, FUS, and HNRNPA2B1 into SGs. We further demonstrate that transient SG formation contributes to persistent accumulation of TDP-43 into cytoplasmic puncta and that our hit compounds can reduce this accumulation in iPS-MNs from ALS patients. We propose that compounds with planar moieties represent a promising starting point to develop small-molecule therapeutics for treating ALS/FTD.


Amyotrophic Lateral Sclerosis/metabolism , Cytoplasmic Granules/drug effects , DNA-Binding Proteins/drug effects , Frontotemporal Dementia/metabolism , Motor Neurons/drug effects , Protein Aggregation, Pathological/metabolism , Small Molecule Libraries/pharmacology , Stress, Physiological/drug effects , Cell Line , Cytoplasmic Granules/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , High-Throughput Screening Assays , Humans , Induced Pluripotent Stem Cells , Intrinsically Disordered Proteins , Motor Neurons/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , RNA-Binding Protein FUS/metabolism
...