Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Environ Monit Assess ; 195(5): 589, 2023 Apr 19.
Article En | MEDLINE | ID: mdl-37074478

The aim of the study was to assess the impact of composting on the release dynamics and partitioning of geogenic nickel (Ni), chromium (Cr) and anthropogenic copper (Cu) and zinc (Zn) in a mixture of sewage sludge and green waste in New Caledonia. In contrast to Cu and Zn, total concentrations of Ni and Cr were very high, tenfold the French regulation, due to their sourcing from Ni and Cr enriched ultramafic soils. The novel method used to assess the behavior of trace metals during composting involved combining EDTA kinetic extraction and BCR sequential extraction. BCR extraction revealed marked mobility of Cu and Zn: more than 30% of the total concentration of these trace metals was found in the mobile fractions (F1 + F2) whereas Ni and Cr were mainly found in the residual fraction (F4). Composting increased the proportion of the stable fractions (F3 + F4) of all four trace metals studied. Interestingly, only EDTA kinetic extraction was able to identify the increase in Cr mobility during composting, Cr mobility being driven by the more labile pool (Q1). However, the total mobilizable pool (Q1 + Q2) of Cr remained very low, < 1% of total Cr content. Among the four trace metals studied, only Ni showed significant mobility, the (Q1 + Q2) pool represented almost half the value given in the regulatory guidelines. This suggests possible environmental and ecological risks associated with spreading our type of compost that require further investigation. Beyond New Caledonia, our results also raise the question of the risks in other Ni-rich soils worldwide.


Composting , Metals, Heavy , Sewage , Trace Elements , Chromium , Edetic Acid , Environmental Monitoring/methods , Metals, Heavy/analysis , New Caledonia , Nickel/analysis , Soil , Zinc/analysis
2.
Mar Pollut Bull ; 129(1): 194-206, 2018 Apr.
Article En | MEDLINE | ID: mdl-29680538

In New Caledonia, shrimp ponds are built not on cleared mangroves but on salt flats behind the mangroves. The objectives of this study were to determine the variability of CO2 fluxes from a semi-intensive shrimp pond during active and non-active periods of the farm and to determine the carbon dynamics from the upstream tidal creek to the downstream creek, which receives the farm's effluents. CO2 emissions from the active pond were estimated at 11.1 ±â€¯5.26 mmol CO2 m-2 d-1. By modifying the hydrodynamics of the creeks, farm practices also influenced CO2 emissions from both the upstream and downstream creeks. After tillage, all the organic carbon deposited at the pond bottom during the active period was mineralized, resulting in CO2 emissions to the atmosphere estimated at 7.9 TCO2 ha-1. Therefore, shrimp farming is an anthropogenic source of CO2 to the atmosphere, but suitable and optimized rearing practices limit these emissions.


Aquaculture/methods , Carbon Dioxide/analysis , Crustacea/growth & development , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Animals , New Caledonia
3.
Sci Total Environ ; 502: 617-26, 2015 Jan 01.
Article En | MEDLINE | ID: mdl-25302449

Carbon budgets in mangrove forests are uncertain mainly due to the lack of data concerning carbon export in dissolved and gaseous forms. Temporal variability of in situ CO2 fluxes was investigated at the sediment-air interface in different seasons in different mangrove stands in a semi-arid climate. Fluxes were measured using dynamic closed incubation chambers (transparent and opaque) connected to an infra-red gas analyzer. Microclimatic conditions and chl-a contents of surface sediments were determined. Over all mangrove stands, CO2 fluxes on intact sediments were relatively low, ranging from -3.93 to 8.85 mmolCO2·m(-2)·h(-1) in the light and in the dark, respectively. Changes in the fluxes over time appeared to depend to a great extent on the development of the biofilm at the sediment surface. We suggest that in intact sediments and in the dark, CO2 fluxes measured at the sediment-air interface rather reflect the metabolism of benthic organisms than sediment respiration (heterotrophic and autotrophic). However, without the biofilm, sediment water content and air temperature were main drivers of seasonal differences in CO2 fluxes, and their influence differed depending on the intertidal location of the stand. After removal of the biofilm, Q10 values in the Avicennia and the Rhizophora stands were 1.84 and 2.1, respectively, revealing the sensitivity of mangrove sediments to an increase in temperature. This study provides evidence that, if the influence of the biofilm is not taken into account, the in situ CO2 emission data currently used to calculate the budget will lead to underestimation of CO2 production linked to heterotrophic respiration fueled by organic matter detritus from the mangrove.


Air Pollutants/analysis , Carbon Dioxide/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Water Pollutants/analysis , Wetlands , Avicennia , New Caledonia
4.
Rapid Commun Mass Spectrom ; 25(19): 2777-84, 2011 Oct 15.
Article En | MEDLINE | ID: mdl-21913255

Mangrove forests could be a simple and effective alternative to conventional sewage treatment, particularly for island communities given its low cost and low maintenance. Due to their high adaptation capacity, these plants are able to tolerate and bioremediate the high levels of nutrients and pollutants found in sewage water. This solution could be applied to small tropical islands with high population density such as Mayotte in the Indian Ocean. This paper reports on a trial by stable isotopic (15)N tracing of such a bioremediation process on pre-treated wastewater near the village of Malamani, in the middle of the large coastal mangrove in the bay near Chirongui. The first results show a boost in the mangrove growth, but a longer period of observation is needed to confirm the beneficial effects, and also to clarify the role of the local crab population, whose engineering activities play an important part in the ecosystem. The exact denitrification process is not yet understood, and the mass balance equation also reveals loss of nitrogen-containing compounds, which needs to be analyzed more closely.


Ecosystem , Nitrogen/analysis , Rhizophoraceae/metabolism , Sewage/chemistry , Biodegradation, Environmental , Comoros , Denitrification , Geologic Sediments/chemistry , Humidity , Indian Ocean , Mass Spectrometry , Nitrogen/chemistry , Nitrogen Isotopes/analysis , Quaternary Ammonium Compounds , Soil/chemistry , Water/chemistry
...