Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Respir J ; 59(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34266939

RESUMEN

Trikafta, currently the leading therapeutic in cystic fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor. We studied F508del-CFTR function, maturation and membrane localisation by Ussing chamber and whole-cell patch-clamp recordings, Western blot and immunolocalisation experiments. With human primary airway epithelial cells and the cell lines CFBE and BHK expressing F508del, we found that, whereas the combination elexacaftor/tezacaftor/ivacaftor was efficient in rescuing F508del-CFTR abnormal maturation, apical membrane location and function, the presence of ivacaftor limits these effects. The basal F508del-CFTR short-circuit current was significantly increased by elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor compared to other correctors and nontreated cells, an effect dependent on ivacaftor and cAMP. These results suggest that the level of the basal F508del-CFTR current might be a marker for correction efficacy in CF cells. When cells were treated with ivacaftor combined to any correctors, the F508del-CFTR current was unresponsive to the subsequently acute addition of ivacaftor, unlike the CFTR (cystic fibrosis transmembrane conductance regulator) potentiators genistein and Cact-A1 which increased elexacaftor/tezacaftor/ivacaftor and elexacaftor/tezacaftor-corrected F508del-CFTR currents. These findings show that ivacaftor reduces the correction efficacy of Trikafta. Thus, combining elexacaftor/tezacaftor with a different potentiator might improve the therapeutic efficacy for treating CF patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células Epiteliales , Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Combinación de Medicamentos , Células Epiteliales/metabolismo , Humanos , Indoles , Mutación , Pirazoles , Piridinas , Pirrolidinas , Quinolinas , Quinolonas
2.
Cells ; 9(7)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668787

RESUMEN

Anomalies in constitutive calcium entry (CCE) have been commonly attributed to cell dysfunction in pathological conditions such as cancer. Calcium influxes of this type rely on channels, such as transient receptor potential (TRP) channels, to be constitutively opened and strongly depend on membrane potential and a calcium driving force. We developed an optogenetic approach based on the expression of the halorhodopsin chloride pump to study CCE in non-excitable cells. Using C2C12 cells, we found that halorhodopsin can be used to achieve a finely tuned control of membrane polarization. Escalating the membrane polarization by incremental changes in light led to a concomitant increase in CCE through transient receptor potential vanilloid 2 (TRPV2) channels. Moreover, light-induced calcium entry through TRPV2 channels promoted cell migration. Our study shows for the first time that by modulating CCE and related physiological responses, such as cell motility, halorhodopsin serves as a potentially powerful tool that could open new avenues for the study of CCE and associated cellular behaviors.


Asunto(s)
Calcio/metabolismo , Movimiento Celular , Potenciales de la Membrana , Optogenética , Animales , Canales de Calcio/metabolismo , Línea Celular , Movimiento Celular/efectos de la radiación , Halorrodopsinas/metabolismo , Humanos , Luz , Potenciales de la Membrana/efectos de la radiación , Ratones , Mioblastos/metabolismo , Mioblastos/efectos de la radiación , Canales Catiónicos TRPV/metabolismo
3.
Sci Rep ; 9(1): 16259, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700158

RESUMEN

Cystic fibrosis (CF) is an inherited disease that is characterised by susceptibility to bacterial infections and chronic lung inflammation. Recently, it was suggested that macrophages contribute to impaired host defence and excessive inflammatory responses in CF. Indeed, dysfunction attributed to CF macrophages includes decreased bacterial killing and exaggerated inflammatory responses. However, the mechanisms behind such defects have only been partially defined. MicroRNAs (miRNAs) have emerged as key regulators of several macrophage functions, including their activation, differentiation and polarisation. The goal of this study was to investigate whether miRNA dysregulation underlies the functional abnormalities of CF macrophages. MiRNA profiling of macrophages was performed, with 22 miRNAs identified as differentially expressed between CF and non-CF individuals. Among these, miR-146a was associated with significant enrichment of validated target genes involved in responses to microorganisms and inflammation. As miR-146a dysregulation has been reported in several human inflammatory diseases, we analysed the impact of increased miR-146a expression on inflammatory responses of CF macrophages. These data show that inhibition of miR-146a in lipopolysaccharide-stimulated CF macrophages results in increased interleukin-6 production, which suggests that miR-146a overexpression in CF is functional, to restrict inflammatory responses.


Asunto(s)
Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulación de la Expresión Génica , Interleucina-6/metabolismo , Macrófagos/metabolismo , MicroARNs/genética , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Interferencia de ARN , Transcriptoma
4.
Sci Rep ; 8(1): 4310, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523858

RESUMEN

Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection.


Asunto(s)
Calcio/metabolismo , Fibrosis Quística/metabolismo , Macrófagos/metabolismo , Microdominios de Membrana/metabolismo , Fagocitosis , Canales Catiónicos TRPV/metabolismo , Adolescente , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
FASEB J ; 31(5): 1891-1902, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28122919

RESUMEN

The innate immune system is able to detect bacterial LPS through the pattern recognition receptor CD14, which delivers LPS to various TLR signaling complexes that subsequently induce intracellular proinflammatory signaling cascades. In a previous study, we showed the overproduction of the soluble form of CD14 (sCD14) by macrophages from patients with cystic fibrosis (CF). CF is an autosomal recessive disorder that is caused by mutations in the gene that encodes the CFTR protein and is characterized by persistent inflammation. Macrophages play a significant role in the initial stages of this disease due to their inability to act as suppressor cells, leading to chronic inflammation in CF. In this work, we investigated the origin of sCD14 by human macrophages and studied the effect of sCD14 on the production of inflammatory cytokine/chemokine. Our data indicate that sCD14 stimulate proinflammatory cytokine/chemokine production in a manner that is independent of LPS but dependent on the TLR-4/CD14 membrane complex, NF-κB, and the inflammasome. Therefore, sCD14, overproduced by CF macrophages, originates primarily from the endocytosis/exocytosis process and should be considered to be a danger-associated molecular pattern. This elucidation of the origin and inflammation-induced mechanisms associated with sCD14 contributes to our understanding of maintained tissue inflammation.-Lévêque, M., Simonin-Le Jeune, K., Jouneau, S., Moulis, S., Desrues, B., Belleguic, C., Brinchault, G., Le Trionnaire, S., Gangneux, J.-P., Dimanche-Boitrel, M.-T., Martin-Chouly, C. Soluble CD14 acts as a DAMP in human macrophages: origin and involvement in inflammatory cytokine/chemokine production.


Asunto(s)
Quimiocinas/biosíntesis , Citocinas/biosíntesis , Inflamación/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Quimiocinas/metabolismo , Fibrosis Quística/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/fisiología
6.
J Cyst Fibros ; 16(4): 443-453, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27856165

RESUMEN

The underlying cause of morbidity in cystic fibrosis (CF) is the decline in lung function, which results in part from chronic inflammation. Inflammation and infection occur early in infancy in CF and the role of innate immune defense in CF has been highlighted in the last years. Once thought simply to be consumers of bacteria, macrophages have emerged as highly sensitive immune cells that are located at the balance point between inflammation and resolution of this inflammation in CF pathophysiology. In order to assess the potential role of macrophage in CF, we review the evidence that: (1) CF macrophage has a dysregulated inflammatory phenotype; (2) CF macrophage presents altered phagocytosis capacity and bacterial killing; and (3) lipid disorders in CF macrophage affect its function. These alterations of macrophage weaken innate defense of CF patients and may be involved in CF disease progression and lung damage.


Asunto(s)
Fibrosis Quística , Macrófagos , Fibrosis Quística/diagnóstico , Fibrosis Quística/inmunología , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Citofagocitosis , Progresión de la Enfermedad , Humanos , Metabolismo de los Lípidos , Macrófagos/inmunología , Macrófagos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...